Fortification of grains has resulted in a positive public health outcome vis-a-vis reduced incidence of neural tube defects. Whether folate has a correspondingly beneficial effect on other disease outcomes is less clear. A role for dietary folate in the prevention of colorectal cancer has been established through epidemiological data. Experimental data aiming to further elucidate this relationship has been somewhat equivocal. Studies report that folate depletion increases DNA damage, mutagenesis, and chromosomal instability, all suggesting inhibited DNA repair. While these data connecting folate depletion and inhibition of DNA repair are convincing, we also present data demonstrating that genetic inhibition of DNA repair is protective in the development of preneoplastic colon lesions, both when folate is depleted and when it is not. The purpose of this paper is to (1) give an overview of the data demonstrating a DNA repair defect in response to folate depletion, and (2) critically compare and contrast the experimental designs utilized in folate/colorectal cancer research and the corresponding impact on tissue folate status and critical colorectal cancer endpoints. Our analysis suggests that there is still an important need for a comprehensive evaluation of the impact of differential dietary prescriptions on blood and tissue folate status. 1. Introduction Folate deficiency has been linked to a variety of pathologic conditions and cancers. Perhaps most notably, folate is required during pregnancy for normal development of the neural tube closure. Once the connection between reduced dietary folate consumption and neural tube defects (NTDs) was well established, the FDA mandated fortification of grain-based foods with folic acid. This mandate resulted in a >25% decrease in incidence of NTDs in the United States [1]. This fortification resulted in a slight bump in average serum folate levels in the United States from approximately 12?ng/mL to approximately 19?ng/mL [2]. Normal range for serum folate concentration in humans is 2.7–17?ng/mL [3]. Thus, folate fortification has resulted in a positive public health outcome for its intended population, women of childbearing age, through moderate increases in serum folate levels and significant reduction in NTD incidence. However, folate is also strongly connected through epidemiological data to an increased risk to develop colorectal cancer. Unlike prevention of NTDs which targets young, healthy populations, colorectal cancer is primarily a disease of aging. Concern for whether folate fortification may be
References
[1]
J. M. Lawrence, D. B. Petitti, M. Watkins, and M. A. Umekubo, “Trends in serum folate after food fortification,” The Lancet, vol. 354, no. 9182, pp. 915–916, 1999.
[2]
S. H. Zeisel, “Importance of methyl donors during reproduction,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 673S–677S, 2009.
[3]
Folic acid-Test, MedlinePlus Medical Encyclopedia.
[4]
M. Lucock, “Folic acid: nutritional biochemistry, molecular biology, and role in disease processes,” Molecular Genetics and Metabolism, vol. 71, no. 1-2, pp. 121–138, 2000.
[5]
M. Fenech, “Folate, DNA damage and the aging brain,” Mechanisms of Ageing and Development, vol. 131, no. 4, pp. 236–241, 2010.
[6]
M. Fenech, “Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity,” Mutation Research, vol. 733, no. 1-2, pp. 21–33, 2012.
[7]
K. Crasta, N. J. Ganem, R. Dagher, et al., “DNA breaks and chromosome pulverization from errors in mitosis,” Nature, vol. 482, no. 7383, pp. 53–58, 2012.
[8]
P. Thomas, J. Wu, V. Dhillon, and M. Fenech, “Effect of dietary intervention on human micronucleus frequency in lymphocytes and buccal cells,” Mutagenesis, vol. 26, no. 1, pp. 69–76, 2011.
[9]
S. Beetstra, P. Thomas, C. Salisbury, J. Turner, and M. Fenech, “Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei,” Mutation Research, vol. 578, no. 1-2, pp. 317–326, 2005.
[10]
T. Teo and M. Fenech, “The interactive effect of alcohol and folic acid on genome stability in human WIL2-NS cells measured using the cytokinesis-block micronucleus cytome assay,” Mutation Research, vol. 657, no. 1, pp. 32–38, 2008.
[11]
V. Dhillon, P. Thomas, and M. Fenech, “Effect of common polymorphisms in folate uptake and metabolism genes on frequency of micronucleated lymphocytes in a South Australian cohort,” Mutation Research, vol. 665, no. 1-2, pp. 1–6, 2009.
[12]
H. Ishikawa, Y. Tian, F. Piao et al., “Genotoxic damage in female residents exposed to environmental air pollution in Shenyang city, China,” Cancer Letters, vol. 240, no. 1, pp. 29–35, 2006.
[13]
N. Botto, M. G. Andreassi, S. Manfredi et al., “Genetic polymorphisms in folate and homocysteine metabolism as risk factors for DNA damage,” European Journal of Human Genetics, vol. 11, no. 9, pp. 671–678, 2003.
[14]
V. S. Dhillon, P. Thomas, G. Iarmarcovai, M. Kirsch-Volders, S. Bonassi, and M. Fenech, “Genetic polymorphisms of genes involved in DNA repair and metabolism influence micronucleus frequencies in human peripheral blood lymphocytes,” Mutagenesis, vol. 26, no. 1, pp. 33–42, 2011.
[15]
R. F. Branda, M. Hacker, A. Lafayette, et al., “Nutritional folate deficiency augments the in vivo mutagenic and lymphocytotoxic activities of alkylating agents,” Environmental and Molecular Mutagenesis, vol. 32, no. 1, pp. 33–38, 1998.
[16]
R. F. Branda, A. R. Lafayette, J. P. O'Neill, and J. A. Nicklas, “The effect of folate deficiency on the hprt mutational spectrum in Chinese hamster ovary cells treated with monofunctional alkylating agents,” Mutation Research, vol. 427, no. 2, pp. 79–87, 1999.
[17]
S. J. Duthie, S. Narayanan, S. Blum, L. Pirie, and G. M. Brand, “Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells,” Nutrition and Cancer, vol. 37, no. 2, pp. 245–251, 2000.
[18]
S. J. Duthie and A. Hawdon, “DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro,” The FASEB Journal, vol. 12, no. 14, pp. 1491–1497, 1998.
[19]
I. I. Kruman, T. S. Kumaravel, A. Lohani et al., “Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1752–1762, 2002.
[20]
A. Unnikrishnan, T. M. Prychitko, H. V. Patel et al., “Folate deficiency regulates expression of DNA polymerase β in response to oxidative stress,” Free Radical Biology and Medicine, vol. 50, no. 2, pp. 270–280, 2011.
[21]
D. C. Cabelof, J. J. Raffoul, J. Nakamura, D. Kapoor, H. Abdalla, and A. R. Heydari, “Imbalanced base excision repair in response to folate deficiency is accelerated by polymerase β haploinsufficiency,” The Journal of Biological Chemistry, vol. 279, no. 35, pp. 36504–36513, 2004.
[22]
R. C. Menzies, P. E. Crossen, P. H. Fitzgerald, and F. W. Gunz, “Cytogenetic and cytochemical studies on marrow cells in B 12 and folate deficiency,” Blood, vol. 28, no. 4, pp. 581–594, 1966.
[23]
P. B. Jacky, B. Beek, and G. R. Sutherland, “Fragile sites in chromosomes: possible model for the study of spontaneous chromosome breakage,” Science, vol. 220, no. 4592, pp. 69–70, 1983.
[24]
J. J. Yunis and A. L. Soreng, “Constitutive fragile sites and cancer,” Science, vol. 226, no. 4679, pp. 1199–1204, 1984.
[25]
G. R. Sutherland, “Heritable fragile sites on human chromosomes. I. Factors affecting expression in lymphocyte culture,” American Journal of Human Genetics, vol. 31, no. 2, pp. 125–135, 1979.
[26]
C. Fonatsch, “A simple method to demonstrate the fragile X chromosome in fibroblasts,” Human Genetics, vol. 59, no. 2, article 186, 1981.
[27]
H. Nilsen, G. Stamp, S. Andersen et al., “Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas,” Oncogene, vol. 22, no. 35, pp. 5381–5386, 2003.
[28]
M. Endres, D. Biniszkiewicz, R. W. Sobol et al., “Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase,” Journal of Clinical Investigation, vol. 113, no. 12, pp. 1711–1721, 2004.
[29]
G. Kronenberg, C. Harms, R. W. Sobol et al., “Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase,” Journal of Neuroscience, vol. 28, no. 28, pp. 7219–7230, 2008.
[30]
C. Rada, J. M. Di Noia, and M. S. Neuberger, “Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation,” Molecular Cell, vol. 16, no. 2, pp. 163–171, 2004.
[31]
Q. An, P. Robins, T. Lindahl, and D. E. Barnes, “C→T mutagenesis and γ-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases,” The EMBO Journal, vol. 24, no. 12, pp. 2205–2213, 2005.
[32]
A. Klungland, I. Rosewell, S. Hollenbach et al., “Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13300–13305, 1999.
[33]
O. Minowa, T. Arai, M. Hirano et al., “Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4156–4161, 2000.
[34]
M. Kunisada, K. Sakumi, Y. Tominaga et al., “8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis,” Cancer Research, vol. 65, no. 14, pp. 6006–6010, 2005.
[35]
N. Yang, H. Galick, and S. S. Wallace, “Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks,” DNA Repair, vol. 3, no. 10, pp. 1323–1334, 2004.
[36]
Y. Xie, H. Yang, C. Cunanan et al., “Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors,” Cancer Research, vol. 64, no. 9, pp. 3096–3102, 2004.
[37]
S. Hirano, Y. Tominaga, A. Ichinoe et al., “Mutator phenotype of MUTYH-null mouse embryonic stem cells,” The Journal of Biological Chemistry, vol. 278, no. 40, pp. 38121–38124, 2003.
[38]
B. P. Engelward, G. Weeda, M. D. Wyatt et al., “Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 13087–13092, 1997.
[39]
R. F. Branda, J. P. O'Neill, E. M. Brooks, C. Powden, S. J. Naud, and J. A. Nicklas, “The effect of dietary folic acid deficiency on the cytotoxic and mutagenic responses to methyl methanesulfonate in wild-type and in 3-methyladenine DNA glycosylase-deficient Aag null mice,” Mutation Research, vol. 615, no. 1-2, pp. 12–17, 2007.
[40]
L. B. Meira, C. A. Moroski-Erkul, S. L. Green et al., “Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 3, pp. 888–893, 2009.
[41]
M. T. A. Ocampo, W. Chaung, D. R. Marenstein et al., “Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity,” Molecular and Cellular Biology, vol. 22, no. 17, pp. 6111–6121, 2002.
[42]
M. Takao, S. I. Kanno, T. Shiromoto et al., “Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols,” The EMBO Journal, vol. 21, no. 13, pp. 3486–3493, 2002.
[43]
N. Yang, M. A. Chaudhry, and S. S. Wallace, “Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in γ-irradiated human cells,” DNA Repair, vol. 5, no. 1, pp. 43–51, 2006.
[44]
B. Karahalil, N. C. de Souza-Pinto, J. L. Parsons, R. H. Elder, and V. A. Bohr, “Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases,” The Journal of Biological Chemistry, vol. 278, no. 36, pp. 33701–33707, 2003.
[45]
D. Cortázar, C. Kunz, J. Selfridge et al., “Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability,” Nature, vol. 470, no. 7334, pp. 419–423, 2011.
[46]
C. B. Millar, J. Guy, O. J. Sansom et al., “Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice,” Science, vol. 297, no. 5580, pp. 403–405, 2002.
[47]
O. J. Sansom, J. Zabkiewicz, S. M. Bishop, J. Guy, A. Bird, and A. R. Clarke, “MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine,” Oncogene, vol. 22, no. 46, pp. 7130–7136, 2003.
[48]
M. Kucherlapati, K. Yang, M. Kuraguchi et al., “Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9924–9929, 2002.
[49]
E. Larsen, C. Gran, B. E. S?ther, E. Seeberg, and A. Klungland, “Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage,” Molecular and Cellular Biology, vol. 23, no. 15, pp. 5346–5353, 2003.
[50]
L. B. Meira, S. Devaraj, G. E. Kisby et al., “Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress,” Cancer Research, vol. 61, no. 14, pp. 5552–5557, 2001.
[51]
J. Huamani, C. A. McMahan, D. C. Herbert et al., “Spontaneous mutagenesis is enhanced in Apex heterozygous mice,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8145–8153, 2004.
[52]
D. L. Cheo, L. B. Meira, D. K. Burns, A. M. Reis, T. Issac, and E. C. Friedberg, “Ultraviolet B radiation-induced skin cancer in mice defective in the Xpc, Trp53, and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors,” Cancer Research, vol. 60, no. 6, pp. 1580–1584, 2000.
[53]
R. S. Tebbs, M. L. Flannery, J. J. Meneses et al., “Requirement for the Xrcc1 DNA base excision repair gene during early mouse development,” Developmental Biology, vol. 208, no. 2, pp. 513–529, 1999.
[54]
D. R. McNeill, P. C. Lin, M. G. Miller, et al., “XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility,” Nucleic Acids Research, vol. 39, no. 18, pp. 7992–8004, 2011.
[55]
H. Saribasak, R. W. Maul, Z. Cao, et al., “XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes,” The Journal of Experimental Medicine, vol. 208, no. 11, pp. 2209–2216, 2011.
[56]
R. S. Tebbs, L. H. Thompson, and J. E. Cleaver, “Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation,” DNA Repair, vol. 2, no. 12, pp. 1405–1417, 2003.
[57]
D. C. Cabelof, Z. Guo, J. J. Raffoul et al., “Base excision repair deficiency caused by polymerase β haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens,” Cancer Research, vol. 63, no. 18, pp. 5799–5807, 2003.
[58]
D. C. Cabelof, Y. Ikeno, A. Nyska et al., “Haploinsufficiency in DNA polymerase β increases cancer risk with age and alters mortality rate,” Cancer Research, vol. 66, no. 15, pp. 7460–7465, 2006.
[59]
L. F. Ventrella-Lucente, A. Unnikrishnan, A. B. Pilling et al., “Folate deficiency provides protection against colon carcinogenesis in DNA polymerase β haploinsufficient mice,” The Journal of Biological Chemistry, vol. 285, no. 25, pp. 19246–19258, 2010.
[60]
D. Allen, D. C. Herbert, C. A. McMahan et al., “Mutagenesis is elevated in male germ cells obtained from DNA polymerase-beta heterozygous mice,” Biology of Reproduction, vol. 79, no. 5, pp. 824–831, 2008.
[61]
D. J. Bentley, J. Selfridge, J. K. Millar et al., “DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cell viability,” Nature Genetics, vol. 13, no. 4, pp. 489–491, 1996.
[62]
N. Puebla-Osorio, D. B. Lacey, F. W. Alt, and C. Zhu, “Early embryonic lethality due to targeted inactivation of DNA ligase III,” Molecular and Cellular Biology, vol. 26, no. 10, pp. 3935–3941, 2006.
[63]
S. G. Widen, P. Kedar, and S. H. Wilson, “Human β-polymerase gene. Structure of the 5′-flanking region and active promoter,” The Journal of Biological Chemistry, vol. 263, no. 32, pp. 16992–16998, 1988.
[64]
R. W. Sobolt, M. Kartalou, K. H. Almeida et al., “Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses,” The Journal of Biological Chemistry, vol. 278, no. 41, pp. 39951–39959, 2003.
[65]
I. P. Pogribny, A. G. Basnakian, B. J. Miller, N. G. Lopatina, L. A. Poirier, and S. J. James, “Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats,” Cancer Research, vol. 55, no. 9, pp. 1894–1901, 1995.
[66]
C. Courtemanche, A. C. Huang, I. Elson-Schwab, N. Kerry, B. Y. Ng, and B. N. Ames, “Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison,” The FASEB Journal, vol. 18, no. 1, pp. 209–211, 2004.
[67]
H. K. Lindberg, X. Wang, H. J?rventaus, G. C. M. Falck, H. Norppa, and M. Fenech, “Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes,” Mutation Research, vol. 617, no. 1-2, pp. 33–45, 2007.
[68]
A. J. MacFarlane, C. A. Perry, M. F. McEntee, D. M. Lin, and P. J. Stover, “Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apcmin-mediated intestinal cancer risk,” Cancer Research, vol. 71, no. 6, pp. 2098–2107, 2011.
[69]
D. H. Kim, S. A. Smith-Warner, D. Spiegelman et al., “Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer,” Cancer Causes and Control, vol. 21, no. 11, pp. 1919–1930, 2010.
[70]
J. B. Mason, “Folate, cancer risk, and the Greek god, Proteus: a tale of two chameleons,” Nutrition Reviews, vol. 67, no. 4, pp. 206–212, 2009.
[71]
G. Varela-Moreiras and J. Selhub, “Long-term folate deficiency alters folate content and distribution differentially in rat tissues,” Journal of Nutrition, vol. 122, no. 4, pp. 986–991, 1992.
[72]
R. K. Le Leu, G. P. Young, and G. H. McIntosh, “Folate deficiency diminishes the occurrence of aberrant crypt foci in the rat colon but does not alter global DNA methylation status,” Journal of Gastroenterology and Hepatology, vol. 15, no. 10, pp. 1158–1164, 2000.
[73]
R. K. Le Leu, G. P. Young, and G. H. McIntosh, “Folate deficiency reduces the development of colorectal cancer in rats,” Carcinogenesis, vol. 21, no. 12, pp. 2261–2265, 2000.
[74]
H. Ghandour, B. F. Lin, S. W. Choi, J. B. Mason, and J. Selhub, “Folate status and age affect the accumulation of L-isoaspartyl residues in rat liver proteins,” Journal of Nutrition, vol. 132, no. 6, pp. 1357–1360, 2002.
[75]
S. W. Choi, S. Friso, G. G. Dolnikowski et al., “Biochemical and molecular aberrations in the rat colon due to folate depletion are age-specific,” Journal of Nutrition, vol. 133, no. 4, pp. 1206–1212, 2003.
[76]
G. M. Lindzon, A. Medline, K. J. Sohn, F. Depeint, R. Croxford, and Y. I. Kim, “Effect of folic acid supplementation on the progression of colorectal aberrant crypt foci,” Carcinogenesis, vol. 30, no. 9, pp. 1536–1543, 2009.
[77]
J. Song, A. Medline, J. B. Mason, S. Gallinger, and Y. I. Kim, “Effects of dietary folate on intestinal tumorigenesis in the ApcMin mouse,” Cancer Research, vol. 60, no. 19, pp. 5434–5440, 2000.
[78]
E. D. Ciappio, Z. Liu, R. S. Brooks, et al., “Maternal B vitamin supplementation from preconception through weaning suppresses intestinal tumorigenesis in Apc1638N mouse offspring,” Gut, vol. 60, no. 12, pp. 1695–1702, 2011.
[79]
I. P. Pogribny, B. J. Miller, and S. J. James, “Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat,” Cancer Letters, vol. 115, no. 1, pp. 31–38, 1997.
[80]
J. Trasler, L. Deng, S. Melnyk et al., “Impact of Dnmt1 deficiency, with and without low folate diets, on tumor numbers and DNA methylation in min mice,” Carcinogenesis, vol. 24, no. 1, pp. 39–45, 2003.
[81]
E. Knock, L. Deng, Q. Wu, D. Leclerc, X. L. Wang, and R. Rozen, “Low dietary folate initiates intestinal tumors in mice, with altered expression of G2-M checkpoint regulators polo-like kinase 1 and cell Division cycle 25c,” Cancer Research, vol. 66, no. 21, pp. 10349–10356, 2006.
[82]
S. J. Duthie, G. Grant, L. P. Pirie, A. J. Watson, and G. P. Margison, “Folate deficiency alters hepatic and colon MGMT and OGG-1 DNA repair protein expression in rats but has no effect on genome-wide DNA methylation,” Cancer Prevention Research, vol. 3, no. 1, pp. 92–100, 2010.
[83]
Y. I. Kim, R. N. Salomon, F. Graeme-Cook et al., “Dietary folate protects against the development of macroscopic colonic neoplasia in a dose responsive manner in rats,” Gut, vol. 39, no. 5, pp. 732–740, 1996.
[84]
Z. Liu, E. D. Ciappio, J. W. Crott, et al., “Combined inadequacies of multiple B vitamins amplify colonic Wnt signaling and promote intestinal tumorigenesis in BAT-LacZxApc1638N mice,” The FASEB Journal, vol. 25, no. 9, pp. 3136–3145, 2011.
[85]
C. D. Davis and E. O. Uthus, “Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats,” Journal of Nutrition, vol. 133, no. 9, pp. 2907–2914, 2003.
[86]
K. S. Al-Numair, M. I. Waly, A. Ali, et al., “Dietary folate protects against azoxymethane-induced aberrant crypt foci development and oxidative stress in rat colon,” Experimental Biology and Medicine, vol. 236, no. 9, pp. 1005–1011, 2011.
[87]
T. A. Graubert, P. Cahan, D. Edwin et al., “A high-resolution map of segmental DNA copy number variation in the mouse genome,” PLoS Genetics, vol. 3, no. 1, article e3, 2007.
[88]
P. Cahan, Y. Li, M. Izumi, and T. A. Graubert, “The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells,” Nature Genetics, vol. 41, no. 4, pp. 430–437, 2009.
[89]
D. C. Cabelof, “Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance,” Cellular and Molecular Life Sciences, vol. 69, no. 5, pp. 727–740, 2012.
[90]
V. B. Holcomb, F. Rodier, Y. Choi et al., “Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response,” Cancer Research, vol. 68, no. 22, pp. 9497–9502, 2008.