Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits.
References
[1]
Elgersma, A.; Tamminga, S.; Ellen, G. Modifying milk composition through forage. Anim. Feed Sci. Tech. 2006, 131, 207–225, doi:10.1016/j.anifeedsci.2006.06.012.
[2]
Arnould, V.M.R.; Soyeurt, H. Genetic variability of milk fatty acids. J. Appl. Genet. 2009, 50, 29–39, doi:10.1007/BF03195649.
[3]
Garnsworthy, P.C.; Masson, L.L.; Lock, A.L.; Mottram, T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006, 89, 1604–1612, doi:10.3168/jds.S0022-0302(06)72227-5.
[4]
Heck, J.M. L.; van Valenberg, H.J.F.; Dijkstra, J.; van Hooijdonk, A.C.M. Seasonal variation in the Dutch bovine raw milk composition. J. Dairy Sci. 2009, 92, 4745–4755, doi:10.3168/jds.2009-2146.
[5]
Auldist, M.J.; Hubble, I.B. Effects of mastitis on raw milk and dairy products. Aust. J. Dairy Technol. 1998, 53, 28–36.
[6]
Walker, G.P.; Dunshea, F.R.; Doyle, P.T. Effects of nutrition and management on the production and composition of milk fat and protein: A review. Aust. J. Agric. Res. 2004, 55, 1009–1028, doi:10.1071/AR03173.
[7]
Glantz, M.; Devold, T.G.; Vegarud, G.E.; Lindmark-M?nsson, H.; St?lhammer, H.; Paulsson, M. Importance of casein micelle size and milk composition for milk gelation. J. Dairy Sci. 2010, 93, 1444–1451, doi:10.3168/jds.2009-2856.
[8]
Wedholm, A.; Larsen, L.B.; Lindmark-M?nsson, H.; Karlsson, A.H.; Andrén, A. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. J. Dairy Sci. 2006, 89, 3296–3305, doi:10.3168/jds.S0022-0302(06)72366-9.
[9]
Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870, doi:10.3168/jds.2012-5507.
[10]
Le Maréchal, C.; Thiéry, R.; Vautor, E.; Le Loir, Y. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282, doi:10.1007/s13594-011-0009-6.
[11]
Tsioulpas, A.; Lewis, M.J.; Grandison, A.S. Effect of minerals on casein micelle stability of cows’ milk. J. Dairy Res. 2007, 74, 167–173, doi:10.1017/S0022029906002330.
[12]
Udabage, P.; McKinnon, I.R.; Augustin, M.A. Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. J. Dairy Sci. 2001, 84, 1569–1575, doi:10.3168/jds.S0022-0302(01)74589-4.
Nguyen, D.A.D.; Neville, M.C. Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia 1998, 3, 233–246, doi:10.1023/A:1018707309361.
[15]
Hettinga, K.; van Valenberg, H.; Lam, T.; van Hooijdonk, A. The origin of the volatile metabolites found in mastitis milk. Vet. Microbiol. 2009, 137, 384–387, doi:10.1016/j.vetmic.2009.01.016.
[16]
Hettinga, K.A.; van Valenberg, H.J. F.; Lam, T.J.G.M.; Van Hooijdonk, A.C.M. Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J. Dairy Sci. 2008, 91, 3834–3839, doi:10.3168/jds.2007-0941.
[17]
Azzara, C.D.; Dimick, P.S. Lipolytic enzyme activity of macrophages in bovine mammary gland secretions. J. Dairy Sci. 1985, 68, 1804–1812, doi:10.3168/jds.S0022-0302(85)81030-4.
[18]
German, J.; Hammock, B.D.; Watkins, S.M. Metabolomics: Building on a century of biochemistry to guide human health. Metabolomics 2005, 1, 3–9, doi:10.1007/s11306-005-1102-8.
[19]
Lindon, J.C.; Holmes, E.; Nicholson, J.K. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res. 2006, 23, 1075–1088, doi:10.1007/s11095-006-0025-z.
[20]
Wishart, D.S. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493, doi:10.1016/j.tifs.2008.03.003.
[21]
Kalo, P.; Kemppinen, A.; Kilpel?inen, I. Determination of positional distribution of butyryl groups in milkfat triacylglycerols, triacylglycerol mixtures, and isolated positional isomers of triacylglycerols by gas chromatography and 1H nuclear magnetic resonance spectroscopy. Lipids 1996, 31, 331–336, doi:10.1007/BF02529880.
[22]
Leslie, R.B.; Irons, L.; Chapman, D. High resolution nuclear magnetic resonance studies of alphas1, beta and kappa-caseins. Biochim. Biophys. Acta 1969, 188, 237–246.
Griffin, M.C.A.; Roberts, G.C.K. A H-1-NMR study of casein micelles. Biochem. J. 1985, 228, 273–276.
[25]
Rollema, H.S.; Brinkhuis, J.A. A H-1-NMR study of bovine casein micelles—Influence of Ph, temperature and calcium-ions on micellar structure. J. Dairy Res. 1989, 56, 417–425.
[26]
Kakalis, L.T.; Kumosinski, T.F.; Farrell, H.M. A Multinuclear, high-resolution NMR-study of bovine casein micelles and submicelles. Biophys. Chem. 1990, 38, 87–98.
[27]
Belloque, J.; Smith, G.M. Thermal Denaturation of β-Lactog lobulin. A 1H NMR Study. J. Agric. Food Chem. 1998, 46, 1805–1813.
[28]
Lubke, M.; Guichard, E.; Tromelin, A.; Le Quere, J.L. Nuclear magnetic resonance spectroscopic study of beta-lactoglobulin interactions with two flavor compounds, gamma-decalactone and beta-ionone. J. Agric. Food Chem. 2002, 50, 7094–7099.
[29]
Kuwata, K.; Hoshino, M.; Era, S.; Batt, C.A.; Goto, Y. α-β transition of β-lactoglobulin as evidenced by heteronuclear NMR. J. Mol. Biol. 1998, 283, 731–739.
[30]
Belloque, J.; De la Fuente, M.A.; Ramos, M. Qualitative and quantitative analysis of phosphorylated compounds in milk by means of P-31-NMR. J. Dairy Res. 2000, 67, 529–539.
[31]
Belloque, J.; Ramos, M. Determination of the casein content in bovine milk by P-31-NMR. J. Dairy Res. 2002, 69, 411–418.
[32]
Belton, P.S.; Lyster, R.L.J.; Richards, C.P. The 31P nuclear magnetic resonance spectrum of cows’ milk. J. Dairy Res. 1985, 52, 47–54.
[33]
Belloque, J.; Ramos, M. Application of NMR spectroscopy to milk and dairy products. Trends Food Sci. Technol. 1999, 10, 313–320.
[34]
Sundekilde, U.K.; Frederiksen, P.D.; Clausen, M.R.; Larsen, L.B.; Bertram, H.C. Relationship between the metabolite profile and technological properties of bovine milk from two dairy breeds elucidated by NMR-based metabolomics. J. Agric. Food Chem. 2011, 59, 7360–7367.
[35]
Klein, M.S.; Almstetter, M.F.; Schlamberger, G.; Nurnberger, N.; Dettmer, K.; Oefner, P.J.; Meyer, H.H.D.; Wiedemann, S.; Gronwald, W. Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J. Dairy Sci. 2010, 93, 1539–1550.
[36]
Klein, M.S.; Buttchereit, N.; Miemczyk, S.P.; Immervoll, A.K.; Louis, C.; Wiedemann, S.; Junge, W.; Thaller, G.; Oefner, P.J.; Gronwald, W. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. J. Proteome Res. 2012, 11, 1373–1381.
[37]
Sundekilde, U.K.; Poulsen, N.; Larsen, L.B.; Bertram, H.C. NMR metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J. Dairy Sci. 2013, 96, 290–299.
[38]
Marincola, F.C.; Noto, A.; Caboni, P.; Reali, A.; Barberini, L.; Lussu, M.; Murgia, F.; Santoru, M.L.; Atzori, L.; Fanos, V. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results. J. Matern. Fetal Neonatal. Med. 2012, 25, 62–67.
[39]
Hu, F.; Furihata, K.; Ito-Ishida, M.; Kaminogawa, S.; Tanokura, M. Nondestructive observation of bovine milk by NMR spectroscopy: analysis of existing states of compounds and detection of new compounds. J. Agric. Food Chem. 2004, 52, 4969–4974.
[40]
Andreotti, G.; Trivellone, E.; Motta, A. Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. J. Food Comp. Anal. 2006, 19, 843–849.
[41]
Hu, F.; Furihata, K.; Kato, Y.; Tanokura, M. Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. J. Agric. Food Chem. 2007, 55, 4307–4311.
Enjalbert, F.; Nicot, M.C.; Baourthe, C.; Moncoulon, R. Ketone bodies in milk and blood of dairy cows: Relationship between concentrations and utilization for detection of subclinical ketosis. J. Dairy Sci. 2001, 84, 583–589.
[44]
Buitenhuis, A.J.; Sundekilde, U.K.; Poulsen, N.; Bertram, H.C.; Larsen, L.B.; S?rensen, P. Estimation of Genetic Parameters and Detection of QTL for Metabolites in Danish Holstein Milk. J. Dairy Sci. 2013, doi:10.3168/jds.2012–5914.
[45]
Sacco, D.; Brescia, M.A.; Sgaramella, A.; Casiello, G.; Buccolieri, A.; Ogrinc, N.; Sacco, A. Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chem. 2009, 114, 1559–1563.
[46]
Davis, S.R.; Farr, V.C.; Prosser, C.G.; Nicholas, G.D.; Turner, S.A.; Lee, J.; Hart, A.L. Milk L-lactate concentration is increased during mastitis. J. Dairy Res. 2004, 71, 175–181.
[47]
Berning, L.M.; Shook, G.E. Prediction of Mastitis Using Milk Somatic Cell Count, N-Acetyl-β-D-Glucosaminidase, and Lactose. J. Dairy Sci. 1992, 75, 1840–1848.
[48]
Maher, A.D.; Hayes, B.; Cocks, B.; Marett, L.; Wales, W.J.; Rochfort, S. Latent biochemical relationships in the blood-milk axis of dairy cows revealed by statistical integration of H NMR spectroscopic data. J. Proteome Res. 2013, doi:10.1021/pr301056q.
[49]
Frederiksen, P.D.; Andersen, K.K.; Hammersh?j, M.; Poulsen, H.D.; S?rensen, J.; Bakman, M.; Qvist, K.B.; Larsen, L.B. Composition and effect of blending of noncoagulating, poorly coagulating, and well-coagulating bovine milk from individual Danish Holstein cows. J. Dairy Sci. 2011, 94, 4787–4799.
[50]
Feagan, J.T.; Bailey, L.F.; Hehir, A.F.; Mclean, D.M.; Ellis, N.J.S. Coagulation of milk proteins. I. Effect of genetic variants of milk proteins on rennet coagulation and heat stability of normal milk. J. Dairy Technol. 1972, 27, 129–134.
[51]
Zabbia, A.; Buys, E.M.; De Kock, H.L. Undesirable Sulphur and Carbonyl Flavor Compounds in UHT Milk: A Review. Crit. Rev. Food Sci. 2011, 52, 21–30.
[52]
Belloque, J.; Carrascosa, A.V.; pez, F. Changes in Phosphoglyceride Composition during Storage of Ultrahigh-Temperature Milk, as Assessed by 31P-Nuclear Magnetic Resonance: Possible Involvement of Thermoresistant Microbial Enzymes. J. Food Prot. 2001, 64, 850–855.
[53]
Brescia, M.A.; Monfreda, M.; Buccolieri, A.; Carrino, C. Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem. 2005, 89, 139–147.
[54]
Mazzei, P.; Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012, 132, 1620–1627.
[55]
Lamanna, R.; Braca, A.; Di Paolo, E.; Imparato, G. Identification of milk mixtures by 1H NMR profiling. Magn. Reson. Chem. 2011, 49, S22–S26.
[56]
Lachenmeier, D.W.; Humpfer, E.; Fang, F.; Schütz, B.; Dvortsak, P.; Sproll, C.; Spraul, M. NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: The example of melamine. J. Agric. Food Chem. 2009, 57, 7194–7199.
[57]
Xin, H.; Stone, R. Tainted milk scandal CHINESE probe unmasks high-tech adulteration with melamine. Science 2008, 322, 1310–1311.
[58]
Monakhova, Y.; Kuballa, T.; Leitz, J.; Andlauer, C.; Lachenmeier, D. NMR spectroscopy as a screening tool to validate nutrition labeling of milk, lactose-free milk, and milk substitutes based on soy and grains. Dairy Sci. Technol. 2012, 92, 109–120.
[59]
Swallow, D.M. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 2003, 37, 197–219.
[60]
Holmes, H.C.; Snodgrass, I.; Iles, R.A. Changes in the choline content of human breast milk in the first 3 weeks after birth. Eur. J. Pediatr. 2000, 159, 198–204.
[61]
O’Sullivan, A.; He, X.; McNiven, E.M.S.; Hinde, K.; Haggarty, N.W.; L?nnerdal, B.; Slupsky, C.M. Metabolomic phenotyping validates the infant rhesus monkey as A model of human infant metabolism. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 355–363.
[62]
Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chem. 2012, 135, 1777–1783.
[63]
Jenkins, T.C.; McGuire, M.A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 2006, 89, 1302–1310.
[64]
Barding, G.A.; Salditos, R.; Larive, C.K. Quantitative NMR for bioanalysis and metabolomics. Anal. Bioanal. Chem. 2012, 404, 1165–1179.
[65]
Miyataka, H.; Ozaki, T.; Himeno, S. Effect of pH on H-1-NMR spectroscopy of mouse urine. Biol. Pharm. Bull. 2007, 30, 667–670.
[66]
Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucl. Acids Res. 2009, 37, D603–D610.
Tomasi, G.; van den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemometr. 2004, 18, 231–241.
[69]
Savorani, F.; Tomasi, G.; Engelsen, S.B. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202, 190–202.
[70]
Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J.K.; Lindon, J.C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 2006, 78, 2262–2267.
[71]
De Meyer, T.; Sinnaeve, D.; van Gasse, B.; Tsiporkova, E.; Rietzschel, E.R.; De Buyzere, M.L.; Gillebert, T.C.; Bekaert, S.; Martins, J.C.; van Criekinge, W. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal. Chem. 2008, 80, 3783–3790.
Davis, R.A.; Charlton, A.J.; Godward, J.; Jones, S.A.; Harrison, M.; Wilson, J.C. Adaptive binning: An improved binning method for metabolomics data using the undecimated wavelet transform. Chemometr. Intell. Lab. 2007, 85, 144–154.
[74]
Anderson, P.E.; Reo, N.V.; DelRaso, N.J.; Doom, T.E.; Raymer, M.L. Gaussian binning: A new kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics 2008, 4, 261–272.
[75]
Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290.
[76]
Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006, 7, doi:10.1186/1471-2164-7-142.
[77]
Jackson, J.E. A User’s Guide to Principal Components; John Wiley and Sons: New York, NY, USA, 1991.