全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A phylogenetic group of Escherichia coli associated with active left-sided Inflammatory Bowel Disease

DOI: 10.1186/1471-2180-9-171

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fecal samples were collected from 18 patients and from 10 healthy controls. Disease activity was evaluated by sigmoidoscopy. Interestingly, E. coli strains of the phylogenetic group B2 were cultured from 60% of patients with IBD compared to 11% of healthy controls (p < 0.05). Furthermore, when comparing the number of E. coli B2 strains with at least one positive ExPEC gene among different groups, 86% were found positive among active IBD patients, significantly more than 13% among inactive IBD patients (p < 0.05), and 11% among healthy controls (p < 0.05). The B2 phylogenetic group was found in a specific cluster based on MLST, but no further separation between E. coli strains associated with active compared to inactive IBD was achieved.In conclusion, E. coli of the phylogenetic group B2 were isolated more frequently from IBD patients with past or present involvement of the left side of the colon compared to healthy controls, and B2 strains with ExPEC genes were found more frequently among IBD patients with active disease compared to patients with inactive disease.The pathogenic mechanisms of inflammatory bowel disease (IBD) have been researched intensely. In general, it is believed that both genetic and environmental factors are involved. When IBD was originally described, a close resemblance to infectious diseases of the gut was noticed. Therefore, many different bacteria, viruses and other microorganisms have been suspected to cause IBD. It is now well established that luminal factors in the intestine are involved in the inflammatory process of Crohn's disease (CD) and ulcerative colitis (UC). For example, diversion of the continuity of the intestines results in healing of the resting gut, whereas the inflammation will return when continuity is reestablished [1]. Furthermore, several animal models have documented the participation of bacteria in the inflammatory process [2]. More importantly, the recent finding of a defect in the caspase recruitment domain family,

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133