全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Metabolites  2013 

Isolation and Expression of a cDNA Encoding Methylmalonic Aciduria Type A Protein from Euglena gracilis Z

DOI: 10.3390/metabo3010144

Keywords: cobalamin, Euglena gracilis, methylmalonyl-CoA mutase, MMAA, vitamin B12

Full-Text   Cite this paper   Add to My Lib

Abstract:

In animals, cobalamin (Cbl) is a cofactor for methionine synthase and methylmalonyl-CoA mutase (MCM), which utilizes methylcobalamin and 5′-deoxyadenosylcobalamin (AdoCbl), respectively. The cblA complementation class of inborn errors of Cbl metabolism in humans is one of three known disorders that affect AdoCbl synthesis. The gene responsible for cblA has been identified in humans ( MMAA) as well as its homolog ( meaB) in Methylobacterium extorquens. Recently, it has been reported that human MMAA plays an important role in the protection and reactivation of MCM in vitro. However, the physiological function of MMAA is largely unknown. In the present study, we isolated the cDNA encoding MMAA from Euglena gracilis Z, a photosynthetic flagellate. The deduced amino acid sequence of the cDNA shows 79%, 79%, 79% and 80% similarity to human, mouse, Danio rerio MMAAs and M. extorquens MeaB, respectively. The level of the MCM transcript was higher in Cbl-deficient cultures of E. gracilis than in those supplemented with Cbl. In contrast, no significant differences were observed in the levels of the MMAA transcript under the same two conditions. No significant difference in MCM activity was observed between Escherichia coli that expressed either MCM together with MMAA or expressed MCM alone.

References

[1]  Banerjee, R.; Ragsdale, S.W. The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 2003, 72, 209–247, doi:10.1146/annurev.biochem.72.121801.161828.
[2]  Ueta, K.; Ishihara, Y.; Yabuta, Y.; Masuda, S.; Watanabe, F. TLC-analysis of a corrinoid compound from Japanese rock-oyster “Iwa-gaki” (Crassostrea. nippona). J. Liquid Chromatography Related Technol. 2011, 34, 928–935, doi:10.1080/10826076.2011.571170.
[3]  Dobson, C.M.; Wai, T.; Leclerc, D.; Wilson, A.; Wu, X.; Doré, C.; Hudson, T.; Rosenblatt, D.S.; Gravel, R.A. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc. Natl. Acad. Sci. USA 2002, 99, 15554–15559.
[4]  Lerner-Ellis, J.P.; Dobson, C.M.; Wai, T.; Watkins, D.; Tirone, J.C.; Leclerc, D.; Doré, C.; Lepage, P.; Gravel, R.A.; Rosenblatt, D.S. Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism. Hum. Mutat. 2004, 6, 509–516.
[5]  Celis, R.T.; Leadlay, P.F.; Roy, I.; Hansen, A. Phosphorylation of the periplasmic binding protein in two transport systems for arginine incorporation in Escherichia coli K-12 is unrelated to the function of the transport system. J. Bacteriol. 1998, 180, 4828–4833.
[6]  Korotkova, N.; Chistoserdova, L.; Kuksa, V.; Lidstrom, M.E. Glyoxylate regeneration pathway in the methylotroph Methylobacterium. extorquens AM1. J. Bacteriol. 2002, 184, 1750–1758, doi:10.1128/JB.184.6.1750-1758.2002.
[7]  Korotkova, N.; Lidstrom, M.E. MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem. 2004, 279, 13652–13658, doi:10.1074/jbc.M312852200.
[8]  Toraya, T. Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell. Mol. Life Sci. 2000, 57, 106–127, doi:10.1007/s000180050502.
[9]  Mori, K.; Tobimatsu, T.; Toraya, T. A protein factor is essential for in situ reactivation of glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. Biosci. Biotechnol. Biochem. 1997, 61, 1729–1733, doi:10.1271/bbb.61.1729.
[10]  Mori, K.; Tobimatsu, T.; Hara, T.; Toraya, T. Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. J. Biol. Chem. 1997, 272, 32034–32041.
[11]  Toraya, T.; Mori, K. A reactivating factor for coenzyme B12-dependent diol dehydratase. J. Biol. Chem. 1999, 274, 3372–3377, doi:10.1074/jbc.274.6.3372.
[12]  Kajiura, H.; Mori, K.; Tobimatsu, T.; Toraya, T. Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J. Biol. Chem. 2001, 276, 36514–36519, doi:10.1074/jbc.M105182200.
[13]  Padovani, D.; Banerjee, R. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. Proc. Natl. Acad. Sci. USA 2009, 106, 21567–21572, doi:10.1073/pnas.0908106106.
[14]  Takahashi-í?iguez, T.; García-Arellano, H.; Trujillo-Roldán, M.A.; Flores, M.E. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem. Biophys. Res. Commun. 2011, 404, 443–447, doi:10.1016/j.bbrc.2010.11.141.
[15]  Froese, D.S.; Dobson, C.M.; White, A.P.; Wu, X.; Padovani, D.; Banerjee, R.; Haller, T.; Gerlt, J.A.; Surette, M.G.; Gravel, R.A. Sleeping beauty mutase (sbm) is expressed and interacts with ygfd in Escherichia coli. Microbiol. Res. 2009, 164, 1–8, doi:10.1016/j.micres.2008.08.006.
[16]  Kitaoka, S.; Nakano, Y.; Miyatake, K.; Yokota, A. In The Biology of Euglena; Buetow, D.E., Ed.; Academic Press: San Diego, CA, USA, 1989; Volume 4, pp. 1–135.
[17]  Isegawa, Y.; Nakano, Y.; Kitaoka, S. Conversion and distribution of cobalamin in Euglena gracilis Z, with special reference to its location and probable function within chloroplasts. Plant Physiol. 1984, 76, 814–818, doi:10.1104/pp.76.3.814.
[18]  Watanabe, F.; Nakano, Y.; Stupperich, E. Different corrinoid specificities for cell growth and the cobalamin uptake system in Euglena gracilis Z. J. Gen. Microbiol. 1992, 138, 1807–1813.
[19]  Isegawa, Y.; Watanabe, F.; Kitaoka, S.; Nakano, Y. SubcelluIar distribution of cobalamin-dependent methionine synthase in Euglena gracilis z. Phytochemisty 1994, 35, 59–61.
[20]  Torrents, E.; Trevisiol, C.; Rotte, C.; Hellman, U.; Martin, W.; Reichard, P. Euglena gracilis ribonucleotide reductase: the eukaryote class II enzyme and the possible antiquity of eukaryote B12 dependence. J. Biol. Chem. 2006, 281, 5604–5611.
[21]  Watanabe, F.; Oki, Y.; Nakano, Y.; Kitaoka, S. Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. J. Biol. Chem. 1987, 262, 11514–11518.
[22]  Miyamoto, E.; Tanioka, Y.; Nishizawa-Yokoi, A.; Yabuta, Y.; Ohnishi, K.; Misono, H.; Shigeoka, S.; Nakano, Y.; Watanabe, F. Characterization of methylmalonyl-CoA mutase involved in the propionate photoassimilation of Euglena gracilis Z. Arch. Microbiol. 2010, 192, 437–446, doi:10.1007/s00203-010-0572-x.
[23]  Taxonomically Broad EST Database. Available online: http://amoebidia.bcm.umontreal.ca/pepdb/searches/login.php.
[24]  Tessier, L.H.; Keller, M.; Chan, R.L.; Fournier, R.; Weil, J.H.; Imbault, P. Short leader sequences may be transferred from small RNAs to pre-mature mRNA by trans-splicing in Euglena. EMBO J. 1991, 10, 2621–2625.
[25]  Frantz, C.; Ebel, C.; Paulus, F.; Imbaut, P. Characterization of trans-splicing in Euglenoids. Curr. Genet. 2000, 37, 349–355, doi:10.1007/s002940000116.
[26]  Ishikawa, T.; Tajima, N.; Nishikawa, H.; Gao, Y.; Rapolu, M.; Shibata, H.; Sawa, Y.; Shigeoka, S. Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization. Biochem. J. 2010, 426, 125–134, doi:10.1042/BJ20091406.
[27]  TargetP prediction program. Available online: http://www.cbs.dtu.dk/services/TargetP/.
[28]  Nakao, M.; Hironaka, S.; Harada, N.; Adachi, T.; Bito, T.; Yabuta, Y.; Watanabe, F.; Miura, T.; Yamaji, R.; Inui, H.; Nakano, Y. Cobalamin deficiency results in an abnormal increase in L-methylmalonyl-co-enzyme-A mutase expression in rat liver and COS-7 cells. Br. J. Nutr. 2009, 101, 492–498.
[29]  ClustalW Program. Available online: http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja, , accessed on 10 February 2013.
[30]  Leipe, D.; Wolf, Y.; Koonin, E.; Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 2002, 317, 41–72.
[31]  Haller, T.; Buckel, T.; Rétey, J.; Gerlt, J.A. Discovering new enzymes and metabolic pathways: conversion of succinate to propionate by Escherichia coli. Biochemistry 2000, 39, 4622–4629, doi:10.1021/bi992888d.
[32]  Chandler, R.J.; Aswani, V.; Tsai, M.S.; Falk, M.; Wehrli, N.; Stabler, S.; Allen, R.; Sedensky, M.; Kazazian, H.H.; Venditti, C.P. Propionyl-CoA and adenosylcobalamin metabolism in Caenorhabditis. elegans: Evidence for a role of methylmalonyl-CoA epimerase in intermediary metabolism. metabolism. Mol. Genet. MeTable 2006, 89, 64–73, doi:10.1016/j.ymgme.2006.06.001.
[33]  Koren, L.E.; Hutner, S.H. High-yield media for photosynthesizing Euglena gracilis Z. J. Protozool. 1967, 14, 17.
[34]  Image J. Available online: http://rsbweb.nih.gov/ij/, , accessed on 10 February 2013.
[35]  Enago. Available online: http://www.enago.jp/, , accessed on 10 February 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133