Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity.
References
[1]
Mann, D.G.; Droop, S.J.M. 3. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 1996, 336, 19–32, doi:10.1007/BF00010816.
[2]
Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms: Biology & Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990; p. 747.
[3]
Souffreau, C.; Vanormelingen, P.; Van de Vijver, B.; Isheva, T.; Verleyen, E.; Sabbe, K.; Vyverman, W. Molecular evidence for distinct antarctic lineages in the cosmopolitan terrestrial diatoms pinnularia borealis and hantzschia amphioxys. Protist 2013, 164, 101–115, doi:10.1016/j.protis.2012.04.001.
Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240, doi:10.1126/science.281.5374.237.
[6]
Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 1998, 281, 200–206, doi:10.1126/science.281.5374.200.
Falkowski, P.G.; Katz, M.E.; Milligan, A.J.; Fennel, K.; Cramer, B.S.; Aubry, M.P.; Berner, R.A.; Novacek, M.J.; Zapol, W.M. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 2005, 309, 2202–2204, doi:10.1126/science.1116047.
Parker, M.S.; Mock, T.; Armbrust, E.V. Genomic insights into marine microalgae. Annu Rev. Genet. 2008, 42, 619–645, doi:10.1146/annurev.genet.42.110807.091417.
[11]
Moustafa, A.; Beszteri, B.; Maier, U.G.; Bowler, C.; Valentin, K.; Bhattacharya, D. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 2009, 324, 1724–1726, doi:10.1126/science.1172983.
[12]
Becker, B.; Hoef-Emden, K.; Melkonian, M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 2008, 8, 203, doi:10.1186/1471-2148-8-203.
[13]
Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244, doi:10.1038/nature07410.
[14]
Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004, 306, 79–86, doi:10.1126/science.1101156.
[15]
Raven, J.A. The Vacuole: A Cost-Benefit Analysis. In Advances in Botanical Research; Academic Press: London, UK, 1997; Volume 25, pp. 59–86.
[16]
Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34, doi:10.1093/nar/27.1.29.
[17]
Fabris, M.; Matthijs, M.; Rombauts, S.; Vyverman, W.; Goossens, A.; Baart, G.J.E. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner–Doudoroff glycolytic pathway. Plant. J. 2012, 70, 1004–1014, doi:10.1111/j.1365-313X.2012.04941.x.
[18]
Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249, doi:10.1007/s00425-010-1130-0.
[19]
Kopriva, S.; Koprivova, A. Sulfate assimilation and glutathione synthesis in C4 plants. Photosynthesis Res. 2005, 86, 363–372, doi:10.1007/s11120-005-3482-z.
[20]
Vavilin, D.V.; Vermaas, W.F.J. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiol. Plantarum 2002, 115, 9–24, doi:10.1034/j.1399-3054.2002.1150102.x.
[21]
Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry & Molecular Biology of Plants; American Society of Plant Physiologists: Rockville, MD, USA, 2000; pp. 358–410.
[22]
Gschloessl, B.; Guermeur, Y.; Cock, J.M. HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics 2008, 9, 393, doi:10.1186/1471-2105-9-393.
[23]
Taira, M.; Valtersson, U.; Burkhardt, B.; Ludwig, R.A. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. The Plant. Cell. Online 2004, 16, 2048–2058, doi:10.1105/tpc.104.022046.
[24]
Kroth, P.; Chiovitti, A.; Gruber, A.; Martin-Jezequel, V.; Mock, T.; Parker, M.S.; Stanley, M.S.; Kaplan, A.; Caron, L.; Weber, T.; Maheswari, U.; Armbrust, E.V.; Bowler, C. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 2008, 3, e1426, doi:10.1371/journal.pone.0001426.
[25]
Ho, C.L.; Saito, K. Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids 2001, 20, 243–259, doi:10.1007/s007260170042.
[26]
Vallon, O.; Spalding, M.H. Amino acid metabolism. In The Chlamydomonas Sourcebook; Harris, E.H., Ed.; Academic Press Inc: London, UK, 2009; Volume 2, pp. 115–158.
[27]
Leustek, T.; Saito, K. Sulfate transport and assimilation in plants. Plant Physiol. 1999, 120, 637–644, doi:10.1104/pp.120.3.637.
[28]
Bromke, M.; Hesse, H. Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana. Amino Acids 2013. in press.
[29]
Kopriva, S.; Buchert, T.; Fritz, G.; Suter, M.; Benda, R.; Schunemann, V.; Koprivova, A.; Schurmann, P.; Trautwein, A.X.; Kroneck, P.M.; et al. The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J. Biol. Chem. 2002, 277, 21786–21791, doi:10.1074/jbc.M202152200.
[30]
Kopriva, S.; Patron, N.J.; Keeling, P.; Leustek, T. Phylogenetic analysis of sulfate assimilation and cysteine biosynthesis in phototrophic organisms. In Sulfur Metabolism in Phototrophic Organisms; Springer: Dordrecht, The Netherlands, 2008; pp. 31–58.
[31]
Gao, Y.; Schofield, O.M.; Leustek, T. Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant. Physiol. 2000, 123, 1087–1096, doi:10.1104/pp.123.3.1087.
[32]
Kopriva, S.; Fritzemeier, K.; Wiedemann, G.; Reski, R. The putative moss 3′-phosphoadenosine-5′-phosphosulfate reductase is a novel form of adenosine-5′-phosphosulfate reductase without an iron-sulfur cluster. J. Biol. Chem. 2007, 282, 22930–22938, doi:10.1074/jbc.M702522200.
[33]
Hell, R.; Wirtz, M. Metabolism of cysteine in plants and phototrophic bacteria. In Sulfur Metabolism in Phototrophic Organisms; Springer: Dordrecht, The Netherlands, 2008; pp. 59–91.
[34]
Bromke, M.A. Studies on the metabolic, transcriptomic and genomic aspects of the sulfur metabolism in marine diatom Thalassiosira pseudonana. Doktor-title dissertation, Potsdam Universit?t, Germany, 2010.
[35]
Walker, J.; Barrett, J. Parasite sulphur amino acid metabolism. Int. J. parasitol. 1997, 27, 883–897, doi:10.1016/S0020-7519(97)00039-8.
[36]
Kerr, D.S.; Flavin, M. Regulation of methionine synthesis and nature of cystathionine gamma-synthase in Neurospora. J. Biol. Chem. 1970, 245, 1842–1855.
[37]
Park, S.D.; Lee, J.Y.; Kim, Y.; Kim, J.H.; Lee, H.S. Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol. Cells 1998, 8, 286–294.
[38]
Helliwell, K.E.; Wheeler, G.L.; Leptos, K.C.; Goldstein, R.E.; Smith, A.G. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol. Biol. Evol. 2012, 28, 2921–2933.
[39]
Brown, J.W. Lysine biosynthesis and the evolution-of pennate marine diatoms. J. Exper. Marine Biol. Ecol. 1984, 80, 197–206, doi:10.1016/0022-0981(84)90011-X.
[40]
Joshi, V.; Joung, J.-G.; Fei, Z.; Jander, G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010, 39, 933–947.
[41]
Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. In Annual Review of Plant Biology; Merchant, S.S., Ed.; Annual Reviews: Palo Alto, USA, 2012; Volume 63, pp. 73–105.
[42]
Schmid, J.; Amrhein, N. Molecular organization of the shikimate pathway in higher plants. Phytochemistry 1995, 39, 737–749, doi:10.1016/0031-9422(94)00962-S.
[43]
Stepansky, A.; Leustek, T. Histidine biosynthesis in plants. Amino Acids 2006, 30, 127–142, doi:10.1007/s00726-005-0247-0.
[44]
Petersen, L.N.; Marineo, S.; Mandalà, S.; Davids, F.; Sewell, B.T.; Ingle, R.A. The Missing Link in Plant Histidine Biosynthesis: Arabidopsis myoinositol monophosphatase-like2 Encodes a Functional Histidinol-Phosphate Phosphatase. Plant. Physiol. 2010, 152, 1186–1196, doi:10.1104/pp.109.150805.
[45]
Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97, doi:10.1016/j.tplants.2009.11.009.
[46]
Slocum, R.D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant. Physiol. Biochem. 2005, 43, 729–745, doi:10.1016/j.plaphy.2005.06.007.
[47]
Allen, A.E.; Dupont, C.L.; Obornik, M.; Horak, A.; Nunes-Nesi, A.; McCrow, J.P.; Zheng, H.; Johnson, D.A.; Hu, H.; Fernie, A.R.; Bowler, C. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011, 473, 203–207.