全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
AIP Advances  2011 

Third-order gas-liquid phase transition and the nature of Andrews critical point

DOI: 10.1063/1.3650703

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main objective of this article is to study the nature of the Andrews critical point in the gas-liquid transition in a physical-vapor transport (PVT) system. A dynamical model, consistent with the van der Waals equation near the Andrews critical point, is derived. With this model, we deduce two physical parameters, which interact exactly at the Andrews critical point, and which dictate the dynamic transition behavior near the Andrews critical point. In particular, it is shown that 1) the gas-liquid co-existence curve can be extended beyond the Andrews critical point, and 2) the transition is first order before the critical point, second-order at the critical point, and third order beyond the Andrews critical point. This clearly explains why it is hard to observe the gas-liquid phase transition beyond the Andrews critical point. Furthermore, the analysis leads naturally the introduction of a general asymmetry principle of fluctuations and the preferred transition mechanism for a thermodynamic system. The theoretical results derived in this article are in agreement with the experimental results obtained in (K. Nishikawa and T. Morita, Fluid behavior at supercritical states studied by small-angle X-ray scattering, Journal of Supercritical Fluid, 13 (1998), pp. 143-148). Also, the derived second-order transition at the critical point is consistent with the result obtained in (M. Fisher, Specific heat of a gas near the critical point, Physical Review, 136:6A (1964), pp. A1599-A1604).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133