全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
AIP Advances  2012 

Modeling of downconverter based on Pr3+-Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency

DOI: 10.1063/1.4766187

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum cutting via a two-step resonant energy transfer in a spectral downconverter of Pr3+-Yb3+ codoped fluoride glass is investigated numerically by proposing up and solving the theoretical model of rate equations and power propagation equations. Based on the optimal Pr3+-Yb3+ concentration and the thickness of the spectral downconverter, the total power conversion efficiency of 175% and total quantum conversion efficiency of 186% are obtained. The performance of a sc-Si solar cell covered with a spectral downconverter is evaluated with the photovoltaic simulation programme PC1D. For sc-Si solar cells, the energy conversion efficiency of 14.90% for the modified AM1.5G compared to a 12.25% energy conversion efficiency for the standard AM1.5G has been obtained, and the simulated relative energy conversion efficiency for the sc-Si solar cell approaches up to 1.21. Our results show that the use of a spectral downconverter yields better sc-Si solar cell performance compared to the standard AM1.5G irradiation. The paper also provides a framework for investigating and optimizing the rare-earth doped spectral downconverter, potentially enabling a sc-Si solar cell with an efficiency improvement.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133