|
Optimal strategy to identify incidence of diagnostic of diabetes using administrative dataAbstract: An exhaustive retrospective cohort of diabetes cases was constructed for 2002 using the Canadian National Diabetes Surveillance System case definition (one hospitalization or two physician claims with a diagnosis of diabetes over a 2-year period) with the Quebec health service database. To identify previous occurrence of diabetes in the database, a five-year observation period was evaluated using retrograde survival function and kappa agreement. The use of NDSS case definition to identify incident cases was compared to a single occurrence of an ICD-9 code 250 in the records using the McNemar test.Retrograde survival function showed that the probability of being a true incident case after a 5-year diabetes-free observation period was almost constant and near 0.14. Agreement between 10 years (maximum period) and 5 years and more diabetes-free observation periods were excellent (kappa > 0.9). Respectively 41,261 and 37,473 incident cases were identified using a 5-year diabetes-free observation period with NDSS definition and using a single ICD-9 code 250.A 5-year diabetes-free observation period was a conservative time to identify incident cases in an administrative database using one ICD-9 code 250 record.Diabetes is one of the most costly and burdensome chronic diseases of our millennium [1]. According to the latest World Health Organization report, more than 180 million people worldwide suffer from diabetes. This number will very likely double by 2030[2]. Therefore, public health prevention and intervention are urgently needed.Planning, implementing and monitoring of appropriate intervention for this disease requires accurate estimates of incidence and prevalence of the disease. Although surveys are used for precise estimation of prevalence and incidence, they are very expensive and time consuming. Alternative methods include secondary analysis of existing data and use of administrative data [3,4]. Advantages of use of administrative data to estimate disease inciden
|