Glucose-regulated protein of 78?kD (GRP78) is a chaperone protein mainly located in the endoplasmic reticulum (ER). This protein is normally present at low levels in adult cells but its expression is triggered by ER stress including glucose deprivation and hypoxia. In tumor cells, it is overexpressed with fraction of protein found at the cell surface. This paper presents the physiology of GRP78 in the context of ovarian cancer and its potential use as drug delivery systems targeting ovarian cancer cell. 1. Introduction Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) chaperone protein belonging to the heat shock protein 70 family. It consists of two functional domains, a 44?kDa N-terminal ATPase and a 20?kDa C-terminal polypeptide-binding domain, and a variable 10?kDa C-terminal tail of unknown function. This protein, as other members of this family, plays an essential role in protein biosynthesis (for review, see [1]). It facilitates folding and assembly of newly synthesized proteins and prevents intra- or intermolecular aggregation during stress conditions [2, 3]. GRP78 expression is induced by a variety of environmental and physiological stress conditions leading to impairment of essential ER functions and homeostasis in order to protect organs and tissues against apoptosis [4]. Its expression also varies with developmental stages and tissue specificity. A low basal level is identified in most adult tissues whereas it is highly induced in cancer [5, 6]. GRP78 expression is induced under such conditions as hypoxia and nutrient deprivation, partially explaining its high level in tumour cells [7]. GRP78 generally resides inside the ER lumen. However, GRP78 is also found at the cell surface in a wide variety of cancer cells, including neuroblastoma, lung adenocarcinoma, colon adenocarcinoma, ovarian tumour cells [8], prostate cancer [9], proliferating endothelial cells, and, more generally, stressed tumour cells [10]. It is still unknown how GRP78 localizes to the various cellular compartments, and its physiological role at the cell surface membrane is still not fully understood. A hypothesis is that upon GRP78 overexpression, it escapes to ER retention and reaches cell surface. Some proteins are involved in GRP78 relocation, as MTJ-1 and Par-4 [11, 12]. Through its binding to other proteins at the cell surface, GRP78 mediates cell-signalling pathways. For example, cell surface GRP78 acts as a receptor for alpha-2-macroglobulin, leading to activation of PAK-2, to induction of cell motility [12, 13], and to activation of MAPK and PI3K
References
[1]
J. Dudek, J. Benedix, S. Cappel et al., “Functions and pathologies of BiP and its interaction partners,” Cellular and Molecular Life Sciences, vol. 66, no. 9, pp. 1556–1569, 2009.
[2]
L. M. Hendershot, “The ER chaperone BiP is a master regulator of ER function,” Mount Sinai Journal of Medicine, vol. 71, no. 5, pp. 289–297, 2004.
[3]
M. Ni and A. S. Lee, “ER chaperones in mammalian development and human diseases,” FEBS Letters, vol. 581, no. 19, pp. 3641–3651, 2007.
[4]
A. S. Lee, “The glucose-regulated proteins: stress induction and clinical applications,” Trends in Biochemical Sciences, vol. 26, no. 8, pp. 504–510, 2001.
[5]
D. Dong, L. Dubeau, J. Bading et al., “Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible Grp78 promoter resulting in eradication of sizable human tumors,” Human Gene Therapy, vol. 15, no. 6, pp. 553–561, 2004.
[6]
J. Li and A. S. Lee, “Stress induction of GRP78/BiP and its role in cancer,” Current Molecular Medicine, vol. 6, no. 1, pp. 45–54, 2006.
[7]
A. S. Lee, “GRP78 induction in cancer: therapeutic and prognostic implications,” Cancer Research, vol. 67, no. 8, pp. 3496–3499, 2007.
[8]
B. K. Shin, H. Wang, A. M. Yim et al., “Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function,” Journal of Biological Chemistry, vol. 278, no. 9, pp. 7607–7616, 2003.
[9]
P. J. Mintz, J. Kim, K. A. Do et al., “Fingerprinting the circulating repertoire of antibodies from cancer patients,” Nature Biotechnology, vol. 21, no. 1, pp. 57–63, 2003.
[10]
D. J. Davidson, C. Haskell, S. Majest et al., “Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78,” Cancer Research, vol. 65, no. 11, pp. 4663–4672, 2005.
[11]
A. S. Lee, “The Par-4-GRP78 TRAIL, more twists and turns,” Cancer Biology & Therapy, vol. 8, no. 22, pp. 2103–2105, 2009.
[12]
U. K. Misra, M. Gonzalez-Gronow, G. Gawdi, and S. V. Pizzo, “The role of MTJ-1 in cell surface translocation of GRP78, a receptor for α2-macroglobulin-dependent signaling,” Journal of Immunology, vol. 174, no. 4, pp. 2092–2097, 2005.
[13]
U. K. Misra, M. Gonzalez-Gronow, G. Gawdi, F. Wang, and S. V. Pizzo, “A novel receptor function for the heat shock protein Grp78: silencing of Grp78 gene expression attenuates α2M*-induced signalling,” Cellular Signalling, vol. 16, no. 8, pp. 929–938, 2004.
[14]
U. K. Misra, R. Deedwania, and S. V. Pizzo, “Activation and cross-talk between Akt, NF-κB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13694–13707, 2006.
[15]
U. K. Misra, Y. Mowery, S. Kaczowka, and S. V. Pizzo, “Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis,” Molecular Cancer Therapeutics, vol. 8, no. 5, pp. 1350–1362, 2009.
[16]
G. Shani, W. H. Fischer, N. J. Justice, J. A. Kelber, W. Vale, and P. C. Gray, “GRP78 and Cripto form a complex at the cell surface and collaborate to inhibit transforming growth factor β signaling and enhance cell growth,” Molecular and Cellular Biology, vol. 28, no. 2, pp. 666–677, 2008.
[17]
B. C. McFarland, J. Stewart Jr., A. Hamza et al., “Plasminogen kringle 5 induces apoptosis of brain microvessel endothelial cells: sensitization by radiation and requirement for GRP78 and LRP1,” Cancer Research, vol. 69, no. 13, pp. 5537–5545, 2009.
[18]
R. Burikhanov, Y. Zhao, A. Goswami, S. Qiu, S. R. Schwarze, and V. M. Rangnekar, “The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis,” Cell, vol. 138, no. 2, pp. 377–388, 2009.
[19]
K. Triantafilou, D. Fradelizi, K. Wilson, and M. Triantafilou, “GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization,” Journal of Virology, vol. 76, no. 2, pp. 633–643, 2002.
[20]
L. Bini, B. Magi, B. Marzocchi et al., “Protein expression profiles in human breast ductal carcinoma and histologically normal tissue,” Electrophoresis, vol. 18, no. 15, pp. 2832–2841, 1997.
[21]
S. Chatterjee, M. F. Cheng, S. J. Berger, and N. A. Berger, “Induction of M(r) 78,000 glucose-regulated stress protein in poly(adenosine diphosphate-ribose) polymerase- and nicotinamide adenine dinucleotide-deficient V79 cell lines and its relation to resistance to the topoisomerase II inhibitor etoposide,” Cancer Research, vol. 54, no. 16, pp. 4405–4411, 1994.
[22]
P. M. Fernandez, S. O. Tabbara, L. K. Jacobs et al., “Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions,” Breast Cancer Research and Treatment, vol. 59, no. 1, pp. 15–26, 2000.
[23]
R. Koom?gi, J. Mattern, and M. Volm, “Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-π, LRP56 and angiogenesis in non-small cell lung carcinomas,” Anticancer Research, vol. 19, no. 5 B, pp. 4333–4336, 1999.
[24]
X. Xing, M. Lai, Y. Wang, E. Xu, and Q. Huang, “Overexpression of glucose-regulated protein 78 in colon cancer,” Clinica Chimica Acta, vol. 364, no. 1-2, pp. 308–315, 2006.
[25]
Y. Fu and A. S. Lee, “Glucose regulated proteins in cancer progression, drug resistance and immunotherapy,” Cancer Biology & Therapy, vol. 5, no. 7, pp. 741–744, 2006.
[26]
J. Zhang, Y. Jiang, Z. Jia et al., “Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer,” Clinical and Experimental Metastasis, vol. 23, no. 7-8, pp. 401–410, 2006.
[27]
C. C. Jiang, Z. G. Mao, K. A. Avery-Kiejda, M. Wade, P. Hersey, and X. D. Zhang, “Glucose-regulated protein 78 antagonizes cisplatin and adriamycin in human melanoma cells,” Carcinogenesis, vol. 30, no. 2, pp. 197–204, 2009.
[28]
J. Wang, Y. Yin, H. Hua et al., “Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9B, pp. 3888–3897, 2009.
[29]
S. Arnaudeau, P. Arboit, P. Bischof et al., “Glucose-regulated protein 78: a new partner of p53 in trophoblast,” Proteomics, vol. 9, no. 23, pp. 5316–5327, 2009.
[30]
Y. Fu, J. Li, and A. S. Lee, “GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis,” Cancer Research, vol. 67, no. 8, pp. 3734–3740, 2007.
[31]
A. C. Ranganathan, L. Zhang, A. P. Adam, and J. A. Aguirre-Ghiso, “Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells,” Cancer Research, vol. 66, no. 3, pp. 1702–1711, 2006.
[32]
H. Zhou, Y. Zhang , Y. Fu, L. Chan, and A. S. Lee, “Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK),” The Journal of Biological Chemistry, vol. 286, no. 29, pp. 25687–25696, 2011.
[33]
Y. Katanasaka, T. Ishii, T. Asai et al., “Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78,” International Journal of Cancer, vol. 127, no. 11, pp. 2685–2698, 2010.
[34]
F. Defresne, C. Bouzin, C. Guilbaud et al., “Differential influence of anticancer treatments and angiogenesis on the seric titer of autoantibody used as tumor and metastasis biomarker,” Neoplasia, vol. 12, no. 7, pp. 562–570, 2010.
[35]
M. Cohen and P. Petignat, “Purified autoantibodies against glucose-regulated protein 78 (GRP78) promote apoptosis and decrease invasiveness of ovarian cancer cells,” Cancer Letters, vol. 309, no. 1, pp. 104–109, 2011.
[36]
M. A. Selim, J. L. Burchette, E. V. Bowers et al., “Changes in oligosaccharide chains of autoantibodies to GRP78 expressed during progression of malignant melanoma stimulate melanoma cell growth and survival,” Melanoma Research, vol. 21, no. 4, pp. 323–334, 2011.
[37]
D. D. Taylor, C. Gercel-Taylor, and L. P. Parker, “Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer,” Gynecologic Oncology, vol. 115, no. 1, pp. 112–120, 2009.
[38]
S. Tsunemi, T. Nakanishi, Y. Fujita et al., “Proteomics-based identification of a tumor-associated antigen and its corresponding autoantibody in gastric cancer,” Oncology Reports, vol. 23, no. 4, pp. 949–956, 2010.
[39]
M. Gonzalez-Gronow, M. Cuchacovich, C. Llanos, C. Urzua, G. Gawdi, and S. V. Pizzo, “Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum,” Cancer Research, vol. 66, no. 23, pp. 11424–11431, 2006.
[40]
U. K. Misra, S. Payne, and S. V. Pizzo, “Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1248–1259, 2011.
[41]
G. G. de Ridder, M. Gonzalez-Gronow, R. Ray, and S. V. Pizzo, “Autoantibodies against cell surface GRP78 promote tumor growth in a murine model of melanoma,” Melanoma Research, vol. 21, no. 1, pp. 35–43, 2011.
[42]
M. Chiriva-Internati, L. Mirandola, W. M. Kast, M. R. Jenkins, E. Cobos, and M. J. Cannon, “Understanding the cross-talk between ovarian tumors and immune cells: mechanisms for effective immunotherapies,” International Reviews of Immunology, vol. 30, no. 2-3, pp. 71–86, 2011.
[43]
S. R. Chinni, R. Falchetto, C. Gercel-Taylor, J. Shabanowitz, D. F. Hunt, and D. D. Taylor, “Humoral immune responses to cathepsin D and glucose-regulated protein 78 in ovarian cancer patients,” Clinical Cancer Research, vol. 3, no. 9, pp. 1557–1564, 1997.
[44]
D. Lu, E. Kuhn, R. E. Bristow et al., “Comparison of candidate serologic markers for type I and type II ovarian cancer,” Gynecologic Oncology, vol. 122, no. 3, pp. 560–566, 2011.
[45]
E. Lee, P. Nichols, S. Groshen, D. Spicer, and A. S. Lee, “GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy,” International Journal of Cancer, vol. 128, no. 3, pp. 726–731, 2011.
[46]
E. Lee, P. Nichols, D. Spicer, S. Groshen, M. C. Yu, and A. S. Lee, “GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer,” Cancer Research, vol. 66, no. 16, pp. 7849–7853, 2006.
[47]
P. Pyrko, A. H. Sch?ntha, F. M. Hofman, T. C. Chen, and A. S. Lee, “The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas,” Cancer Research, vol. 67, no. 20, pp. 9809–9816, 2007.
[48]
M. A. Arap, J. Lahdenranta, P. J. Mintz et al., “Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands,” Cancer Cell, vol. 6, no. 3, pp. 275–284, 2004.
[49]
Y. Kim, A. M. Lillo, S. C. J. Steiniger et al., “Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand,” Biochemistry, vol. 45, no. 31, pp. 9434–9444, 2006.
[50]
Y. Liu, S. C. J. Steiniger, Y. Kim, G. F. Kaufmann, B. Felding-Habermann, and K. D. Janda, “Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery,” Molecular Pharmaceutics, vol. 4, no. 3, pp. 435–447, 2007.
[51]
R. J. Passarella, D. E. Spratt, A. E. van der Ende et al., “Targeted nanoparticles that deliver a sustained, specific release of paclitaxel to irradiated tumors,” Cancer Research, vol. 70, no. 11, pp. 4550–4559, 2010.