全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Vaccines  2013 

Tumor-Associated Glycans and Immune Surveillance

DOI: 10.3390/vaccines1020174

Keywords: monoclonal antibodies, immunotherapy, cancer, mimics, vaccine, TACA, glycans, tumor, carbohydrate

Full-Text   Cite this paper   Add to My Lib

Abstract:

Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.

References

3Lewis(x) on the 6-linked antenna and N-acetylneuraminic acidalpha2-->3 or Galactose alpha1-->3 on the 3-linked antenna, expressed in porcine kidney. Glycoconj. J. 1998, 15, 1001–1016.
-->
[1]  Swann, J.B.; Smyth, M.J. Immune surveillance of tumors. J. Clin. Invest. 2007, 117, 1137–1146, doi:10.1172/JCI31405.
[2]  Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 1970, 13, 1–27.
[3]  Soloski, M.J. Recognition of tumor cells by the innate immune system. Curr. Opin. Immunol. 2001, 13, 154–162, doi:10.1016/S0952-7915(00)00198-9.
[4]  Wang, E.; Monaco, A.; Monsurro, V.; Sabatino, M.; Pos, Z.; Uccellini, L.; Wang, J.; Worschech, A.; Stroncek, D.F.; Marincola, F.M. Antitumor vaccines, immunotherapy and the immunological constant of rejection. IDrugs 2009, 12, 297–301.
[5]  Wang, E.; Worschech, A.; Marincola, F.M. The immunologic constant of rejection. Trends Immunol. 2008, 29, 256–262, doi:10.1016/j.it.2008.03.002.
[6]  Houghton, A.N.; Guevara-Pati?o, J.A. Immune recognition of self in immunity against cancer. J. Clin. Invest. 2004, 114, 468–471.
[7]  Schreiber, T.H.; Raez, L.; Rosenblatt, J.D.; Podack, E.R. Tumor immunogenicity and responsiveness to cancer vaccine therapy: The state of the art. Semin. Immunol. 2010, 22, 105–112, doi:10.1016/j.smim.2010.02.001.
[8]  Hakomori, S. Tumor-associated carbohydrate antigens defining tumor malignancy: Basis for development of anti-cancer vaccines. Adv. Exp. Med. Biol. 2001, 491, 369–402, doi:10.1007/978-1-4615-1267-7_24.
[9]  Xu, Y.; Sette, A.; Sidney, J.; Gendler, S.J.; Franco, A. Tumor-associated carbohydrate antigens: A possible avenue for cancer prevention. Immunol. Cell Biol. 2005, 83, 440–448, doi:10.1111/j.1440-1711.2005.01347.x.
[10]  Ono, M.; Hakomori, S. Glycosylation defining cancer cell motility and invasiveness. Glycoconj. J. 2004, 20, 71–78.
[11]  Sakamoto, S.; Kyprianou, N. Targeting anoikis resistance in prostate cancer metastasis. Mol. Aspects Med. 2010, 31, 205–214, doi:10.1016/j.mam.2010.02.001.
[12]  Zhong, X.; Rescorla, F.J. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal. 2012, 24, 393–401, doi:10.1016/j.cellsig.2011.10.005.
[13]  Kornberg, L.J. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 1998, 20, 745–752, doi:10.1002/(SICI)1097-0347(199812)20:8<745::AID-HED14>3.0.CO;2-Z.
[14]  Hauck, C.R.; Hsia, D.A.; Schlaepfer, D.D. The focal adhesion kinase—A regulator of cell migration and invasion. IUBMB Life 2002, 53, 115–119, doi:10.1080/15216540211470.
[15]  Sawai, H.; Okada, Y.; Funahashi, H.; Matsuo, Y.; Takahashi, H.; Takeyama, H.; Manabe, T. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol. Cancer 2005, 4, 37, doi:10.1186/1476-4598-4-37.
[16]  Danker, K.; Reutter, W.; Semini, G. Glycosidated phospholipids: Uncoupling of signalling pathways at the plasma membrane. Br. J. Pharmacol. 2010, 160, 36–47, doi:10.1111/j.1476-5381.2009.00626.x.
[17]  Zhang, D.; Wei, J.; Wang, J.; Liu, S.; Wang, X.; Yan, Q. Difucosylated oligosaccharide Lewis Y is contained within integrin alphavbeta3 on RL95–2 cells and required for endometrial receptivity. Fertil. Steril. 2011, 95, 1446–1451.
[18]  Valentino, L.A.; Ladisch, S. Tumor gangliosides enhance alpha2 beta1 integrin-dependent platelet activation. Biochim. Biophys. Acta 1996, 1316, 19–28, doi:10.1016/0925-4439(95)00092-5.
[19]  Chen, Y.X.; Chen, X.W.; Li, C.G.; Yue, L.J.; Mai, H.R.; Wen, F.Q. Effect of tumor gangliosides on tyrosine phosphorylation of p125FAK in platelet adhesion to collagen. Oncol. Rep. 2013, 29, 343–348.
[20]  Ohkawa, Y.; Miyazaki, S.; Hamamura, K.; Kambe, M.; Miyata, M.; Tajima, O.; Ohmi, Y.; Yamauchi, Y.; Furukawa, K. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J. Biol. Chem. 2010, 285, 27213–27223, doi:10.1074/jbc.M109.087791.
[21]  Aixinjueluo, W.; Furukawa, K.; Zhang, Q.; Hamamura, K.; Tokuda, N.; Yoshida, S.; Ueda, R. Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: Roles of anoikis. J. Biol. Chem. 2005, 280, 29828–29836.
[22]  Christiansen, D.; Vaughan, H.A.; Milland, J.; Dodge, N.; Mouhtouris, E.; Smyth, M.J.; Godfrey, D.I.; Sandrin, M.S. Antibody responses to glycolipid-borne carbohydrates require CD4+ T cells but not CD1 or NKT cells. Immunol. Cell Biol. 2011, 89, 502–510, doi:10.1038/icb.2010.166.
[23]  Zajonc, D.M.; Kronenberg, M. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells. Immunol. Rev. 2009, 230, 188–200, doi:10.1111/j.1600-065X.2009.00802.x.
[24]  Freire, T.; Zhang, X.; Deriaud, E.; Ganneau, C.; Vichier-Guerre, S.; Azria, E.; Launay, O.; Lo-Man, R.; Bay, S.; Leclerc, C. Glycosidic Tn-based vaccines targeting dermal dendritic cells favor germinal center B-cell development and potent antibody response in the absence of adjuvant. Blood 2010, 116, 3526–3536, doi:10.1182/blood-2010-04-279133.
[25]  Ragupathi, G.; Liu, N.X.; Musselli, C.; Powell, S.; Lloyd, K.; Livingston, P.O. Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J. Immunol. 2005, 174, 5706–5712.
[26]  Lavrsen, K.; Madsen, C.B.; Rasch, M.G.; Woetmann, A.; Odum, N.; Mandel, U.; Clausen, H.; Pedersen, A.E.; Wandall, H.H. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj. J. 2013, 30, 227–236, doi:10.1007/s10719-012-9437-7.
[27]  Vollmers, H.P.; Brandlein, S. Natural antibodies and cancer. N. Biotechnol. 2009, 25, 294–298, doi:10.1016/j.nbt.2009.03.016.
[28]  Champion, E.; Andre, I.; Moulis, C.; Boutet, J.; Descroix, K.; Morel, S.; Monsan, P.; Mulard, L.A.; Remaud-Simeon, M. Design of alpha-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 2009, 131, 7379–7389, doi:10.1021/ja900183h.
[29]  Pon, R.A.; Biggs, N.J.; Jennings, H.J. Polysialic acid bioengineering of neuronal cells by N-acyl sialic acid precursor treatment. Glycobiology 2007, 17, 249–260.
[30]  Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science 2001, 291, 2357–2364, doi:10.1126/science.1059820.
[31]  Livingston, P.O.; Zhang, S.; Lloyd, K.O. Carbohydrate vaccines that induce antibodies against cancer. 1. Rationale. Cancer Immunol. Immunother. 1997, 45, 1–9, doi:10.1007/s002620050394.
[32]  Nakagoe, T.; Fukushima, K.; Tanaka, K.; Sawai, T.; Tsuji, T.; Jibiki, M.; Nanashima, A.; Yamaguchi, H.; Yasutake, T.; Ayabe, H.; Arisawa, K. Evaluation of sialyl Lewis(a), sialyl Lewis(x), and sialyl Tn antigens expression levels as predictors of recurrence after curative surgery in node-negative colorectal cancer patients. J. Exp. Clin. Cancer Res. 2002, 21, 107–113.
[33]  Walz, G.; Aruffo, A.; Kolanus, W.; Bevilacqua, M.; Seed, B. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990, 250, 1132–1135.
[34]  Gout, S.; Tremblay, P.L.; Huot, J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin. Exp. Metastasis 2008, 25, 335–344, doi:10.1007/s10585-007-9096-4.
[35]  Doekhie, F.S.; Morreau, H.; de Bock, G.H.; Speetjens, F.M.; Dekker-Ensink, N.G.; Putter, H.; van de Velde, C.J.; Tollenaar, R.A.; Kuppen, P.J. Sialyl Lewis X expression and lymphatic microvessel density in primary tumors of node-negative colorectal cancer patients predict disease recurrence. Cancer Microenviron. 2008, 1, 141–151, doi:10.1007/s12307-008-0014-3.
[36]  Shimodaira, K.; Nakayama, J.; Nakamura, N.; Hasebe, O.; Katsuyama, T.; Fukuda, M. Carcinoma-associated expression of core 2 beta-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: Role of O-glycans in tumor progression. Cancer Res. 1997, 57, 5201–5206.
[37]  Dennis, J.W.; Pawling, J.; Cheung, P.; Partridge, E.; Demetriou, M. UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochim. Biophys. Acta 2002, 1573, 414–422.
[38]  Yousefi, S.; Higgins, E.; Daoling, Z.; Pollex-Kruger, A.; Hindsgaul, O.; Dennis, J.W. Increased UDP-GlcNAc:Gal beta 1-3GaLNAc-R (GlcNAc to GaLNAc) beta-1, 6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J. Biol. Chem. 1991, 266, 1772–1782.
[39]  Hagisawa, S.; Ohyama, C.; Takahashi, T.; Endoh, M.; Moriya, T.; Nakayama, J.; Arai, Y.; Fukuda, M. Expression of core 2 beta1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 2005, 15, 1016–1024, doi:10.1093/glycob/cwi086.
[40]  Tsuboi, S.; Fukuda, M. Roles of O-linked oligosaccharides in immune responses. Bioessays 2001, 23, 46–53, doi:10.1002/1521-1878(200101)23:1<46::AID-BIES1006>3.0.CO;2-3.
[41]  Fukuda, M. Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta 2002, 1573, 394–405, doi:10.1016/S0304-4165(02)00409-9.
[42]  Pang, P.C.; Tissot, B.; Drobnis, E.Z.; Morris, H.R.; Dell, A.; Clark, G.F. Analysis of the human seminal plasma glycome reveals the presence of immunomodulatory carbohydrate functional groups. J. Proteome Res. 2009, 8, 4906–4915, doi:10.1021/pr9001756.
[43]  Okamoto, T.; Yoneyama, M.S.; Hatakeyama, S.; Mori, K.; Yamamoto, H.; Koie, T.; Saitoh, H.; Yamaya, K.; Funyu, T.; Fukuda, M.; et al. Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol. Med. Rep. 2013, 7, 359–364.
[44]  Suzuki, Y.; Sutoh, M.; Hatakeyama, S.; Mori, K.; Yamamoto, H.; Koie, T.; Saitoh, H.; Yamaya, K.; Funyu, T.; Habuchi, T.; et al. MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int. J. Oncol. 2012, 40, 1831–1838.
[45]  Tsuboi, S.; Sutoh, M.; Hatakeyama, S.; Hiraoka, N.; Habuchi, T.; Horikawa, Y.; Hashimoto, Y.; Yoneyama, T.; Mori, K.; Koie, T.; et al. A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J. 2011, 30, 3173–3185, doi:10.1038/emboj.2011.215.
[46]  Tsuboi, S. Tumor defense systems using O-glycans. Biol. Pharm. Bull. 2012, 35, 1633–1636, doi:10.1248/bpb.b12-00367.
[47]  Galli-Stampino, L.; Meinjohanns, E.; Frische, K.; Meldal, M.; Jensen, T.; Werdelin, O.; Mouritsen, S. T-cell recognition of tumor-associated carbohydrates: The nature of the glycan moiety plays a decisive role in determining glycopeptide immunogenicity. Cancer Res. 1997, 57, 3214–3222.
[48]  Snijdewint, F.G.; von Mensdorff-Pouilly, S.; Karuntu-Wanamarta, A.H.; Verstraeten, A.A.; Livingston, P.O.; Hilgers, J.; Kenemans, P. Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int. J. Cancer 2001, 93, 97–106, doi:10.1002/ijc.1286.
[49]  Pashov, A.; Monzavi-Karbassi, B.; Chow, M.; Cannon, M.; Kieber-Emmons, T. Immune surveillance as a rationale for immunotherapy? Hum. Vaccin. 2007, 3, 224–228.
[50]  Van Kooyk, Y.; Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 2008, 9, 593–601, doi:10.1038/ni.f.203.
[51]  Pashov, A.; Monzavi-Karbassi, B.; Raghava, G.P.; Kieber-Emmons, T. Bridging innate and adaptive antitumor immunity targeting glycans. J. Biomed. Biotechnol. 2010, doi:10.1155/2010/354068.
[52]  Freire, T.; Osinaga, E. The sweet side of tumor immunotherapy. Immunotherapy 2012, 4, 719–734, doi:10.2217/imt.12.58.
[53]  Olive, C. Pattern recognition receptors: Sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev. Vaccines 2012, 11, 237–256, doi:10.1586/erv.11.189.
[54]  Krishnaswamy, J.K.; Chu, T.; Eisenbarth, S.C. Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol. 2013, 34, 224–233, doi:10.1016/j.it.2012.12.003.
[55]  Davicino, R.C.; Elicabe, R.J.; di Genaro, M.S.; Rabinovich, G.A. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int. Immunopharmacol. 2011, 11, 1457–1463, doi:10.1016/j.intimp.2011.05.002.
[56]  Schwartz-Albiez, R. Naturally occurring antibodies directed against carbohydrate tumor antigens. Adv. Exp. Med. Biol. 2012, 750, 27–43, doi:10.1007/978-1-4614-3461-0_3.
[57]  Rodriguez-Zhurbenko, N.; Martinez, D.; Blanco, R.; Rondon, T.; Grinan, T.; Hernandez, A.M. Human antibodies reactive to NeuGcGM3 ganglioside have cytotoxic anti-tumor properties. Eur. J. Immunol. 2013, 14, 201242693.
[58]  Monzavi-Karbassi, B.; Artaud, C.; Jousheghany, F.; Hennings, L.; Carcel-Trullols, J.; Shaaf, S.; Korourian, S.; Kieber-Emmons, T. Reduction of spontaneous metastases through induction of carbohydrate cross-reactive apoptotic antibodies. J. Immunol. 2005, 174, 7057–7065.
[59]  Farag, S.S.; Caligiuri, M.A. Human natural killer cell development and biology. Blood Rev. 2006, 20, 123–137, doi:10.1016/j.blre.2005.10.001.
[60]  Koch, J.; Steinle, A.; Watzl, C.; Mandelboim, O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013, 34, 182–191, doi:10.1016/j.it.2013.01.003.
[61]  Porgador, A. Natural cytotoxicity receptors: Pattern recognition and involvement of carbohydrates. ScientificWorldJournal 2005, 5, 151–154, doi:10.1100/tsw.2005.22.
[62]  Disis, M.L. Immune regulation of cancer. J. Clin. Oncol. 2010, 28, 4531–4538, doi:10.1200/JCO.2009.27.2146.
[63]  Backer, A.E.; Holgersson, J.; Samuelsson, B.E.; Karlsson, H. Rapid and sensitive GC/MS characterization of glycolipid released Galalpha1,3Gal-terminated oligosaccharides from small organ specimens of a single pig. Glycobiology 1998, 8, 533–545, doi:10.1093/glycob/8.6.533.
[64]  Hallberg, E.C.; Holgersson, J.; Samuelsson, B.E. Glycosphingolipid expression in pig aorta: Identification of possible target antigens for human natural antibodies. Glycobiology 1998, 8, 637–649, doi:10.1093/glycob/8.7.637.
[65]  Bouhours, D.; Liaigre, J.; Lemoine, J.; Mayer-Posner, F.; Bouhours, J.F. Two novel isoneolacto-undecaglycosylceramides carrying Galalpha1-->3Lewis(x) on the 6-linked antenna and N-acetylneuraminic acidalpha2-->3 or Galactose alpha1-->3 on the 3-linked antenna, expressed in porcine kidney. Glycoconj. J. 1998, 15, 1001–1016.
[66]  Macher, B.A.; Galili, U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: A carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta 2008, 1780, 75–88, doi:10.1016/j.bbagen.2007.11.003.
[67]  Stussi, G.; Mueller, R.J.; Passweg, J.; Schanz, U.; Rieben, R.; Seebach, J.D. ABO blood group incompatible haematopoietic stem cell transplantation and xenograft rejection. Swiss Med. Wkly. 2007, 137, 101S–108S.
[68]  Gates, M.A.; Wolpin, B.M.; Cramer, D.W.; Hankinson, S.E.; Tworoger, S.S. ABO blood group and incidence of epithelial ovarian cancer. Int. J. Cancer 2011, 128, 482–486, doi:10.1002/ijc.25339.
[69]  Hakomori, S. Antigen structure and genetic basis of histo-blood groups A, B and O: Their changes associated with human cancer. Biochim. Biophys. Acta 1999, 1473, 247–266, doi:10.1016/S0304-4165(99)00183-X.
[70]  Lin, S.S.; Parker, W.; Everett, M.L.; Platt, J.L. Differential recognition by proteins of alpha-galactosyl residues on endothelial cell surfaces. Glycobiology 1998, 8, 433–443, doi:10.1093/glycob/8.5.433.
[71]  Korourian, S.; Siegel, E.; Kieber-Emmons, T.; Monzavi-Karbassi, B. Expression analysis of carbohydrate antigens in ductal carcinoma in situ of the breast by lectin histochemistry. BMC Cancer 2008, 8, 136, doi:10.1186/1471-2407-8-136.
[72]  Preiss, S.; Kammertoens, T.; Lampert, C.; Willimsky, G.; Blankenstein, T. Tumor-induced antibodies resemble the response to tissue damage. Int. J. Cancer 2005, 115, 456–462, doi:10.1002/ijc.20914.
[73]  Spalter, S.H.; Kaveri, S.V.; Bonnin, E.; Mani, J.C.; Cartron, J.P.; Kazatchkine, M.D. Normal human serum contains natural antibodies reactive with autologous ABO blood group antigens. Blood 1999, 93, 4418–4424.
[74]  Galili, U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol. Cell Biol. 2005, 83, 674–686, doi:10.1111/j.1440-1711.2005.01366.x.
[75]  Galili, U. Immune response, accommodation, and tolerance to transplantation carbohydrate antigens. Transplantation 2004, 78, 1093–1098, doi:10.1097/01.TP.0000142673.32394.95.
[76]  Apostolopoulos, V.; Osinski, C.; McKenzie, I.F. MUC1 cross-reactive Gal alpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral. Nat. Med. 1998, 4, 315–320, doi:10.1038/nm0398-315.
[77]  Abdel-Motal, U.M.; Wigglesworth, K.; Galili, U. Mechanism for increased immunogenicity of vaccines that form in vivo immune complexes with the natural anti-Gal antibody. Vaccine 2009, 27, 3072–3082, doi:10.1016/j.vaccine.2009.03.019.
[78]  Cobb, B.A.; Kasper, D.L. Coming of age: Carbohydrates and immunity. Eur. J. Immunol. 2005, 35, 352–356, doi:10.1002/eji.200425889.
[79]  Jackson, S.; Folks, T.M.; Wetterskog, D.L.; Kindt, T.J. A rabbit helper T cell clone reactive against group-specific streptococcal carbohydrate. J. Immunol. 1984, 133, 1553–1557.
[80]  Petersen, J.; Purcell, A.W.; Rossjohn, J. Post-translationally modified T cell epitopes: Immune recognition and immunotherapy. J. Mol. Med. 2009, 87, 1045–1051, doi:10.1007/s00109-009-0526-4.
[81]  Szabo, T.G.; Palotai, R.; Antal, P.; Tokatly, I.; Tothfalusi, L.; Lund, O.; Nagy, G.; Falus, A.; Buzas, E.I. Critical role of glycosylation in determining the length and structure of T cell epitopes. Immun. Res. 2009, 5, 4, doi:10.1186/1745-7580-5-4.
[82]  Zhao, X.J.; Cheung, N.K. GD2 oligosaccharide: Target for cytotoxic T lymphocytes. J. Exp. Med. 1995, 182, 67–74, doi:10.1084/jem.182.1.67.
[83]  Tzianabos, A.O.; Finberg, R.W.; Wang, Y.; Chan, M.; Onderdonk, A.B.; Jennings, H.J.; Kasper, D.L. T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria. J. Biol. Chem. 2000, 275, 6733–6740.
[84]  Cobb, B.A.; Kasper, D.L. Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Glycobiology 2008, 18, 707–718, doi:10.1093/glycob/cwn050.
[85]  Haurum, J.S.; Arsequell, G.; Lellouch, A.C.; Wong, S.Y.; Dwek, R.A.; McMichael, A.J.; Elliott, T. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J. Exp. Med. 1994, 180, 739–744, doi:10.1084/jem.180.2.739.
[86]  Haurum, J.S.; Hoier, I.B.; Arsequell, G.; Neisig, A.; Valencia, G.; Zeuthen, J.; Neefjes, J.; Elliott, T. Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo. J. Exp. Med. 1999, 190, 145–150, doi:10.1084/jem.190.1.145.
[87]  Haurum, J.S.; Tan, L.; Arsequell, G.; Frodsham, P.; Lellouch, A.C.; Moss, P.A.; Dwek, R.A.; McMichael, A.J.; Elliott, T. Peptide anchor residue glycosylation: Effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur. J. Immunol. 1995, 25, 3270–3276, doi:10.1002/eji.1830251211.
[88]  Carbone, F.R.; Gleeson, P.A. Carbohydrates and antigen recognition by T cells. Glycobiology 1997, 7, 725–730, doi:10.1093/glycob/7.6.725-d.
[89]  Madsen, C.B.; Petersen, C.; Lavrsen, K.; Harndahl, M.; Buus, S.; Clausen, H.; Pedersen, A.E.; Wandall, H.H. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response. PLoS One 2012, 7, e50139.
[90]  Muthukkumar, S.; Stein, K.E. Immunization with meningococcal polysaccharide-tetanus toxoid conjugate induces polysaccharide-reactive T cells in mice. Vaccine 2004, 22, 1290–1299, doi:10.1016/j.vaccine.2003.08.047.
[91]  Glithero, A.; Tormo, J.; Haurum, J.S.; Arsequell, G.; Valencia, G.; Edwards, J.; Springer, S.; Townsend, A.; Pao, Y.L.; Wormald, M.; et al. Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Immunity 1999, 10, 63–74, doi:10.1016/S1074-7613(00)80007-2.
[92]  Speir, J.A.; Abdel-Motal, U.M.; Jondal, M.; Wilson, I.A. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Immunity 1999, 10, 51–61, doi:10.1016/S1074-7613(00)80006-0.
[93]  Stepensky, D.; Tzehoval, E.; Vadai, E.; Eisenbach, L. O-glycosylated versus non-glycosylated MUC1-derived peptides as potential targets for cytotoxic immunotherapy of carcinoma. Clin. Exp. Immunol. 2006, 143, 139–149, doi:10.1111/j.1365-2249.2005.02965.x.
[94]  Bohm, C.M.; Mulder, M.C.; Zennadi, R.; Notter, M.; Schmitt-Graff, A.; Finn, O.J.; Taylor-Papadimitriou, J.; Stein, H.; Clausen, H.; Riecken, E.O.; et al. Carbohydrate recognition on MUC1-expressing targets enhances cytotoxicity of a T cell subpopulation. Scand. J. Immunol. 1997, 46, 27–34, doi:10.1046/j.1365-3083.1996.d01-91.x.
[95]  Abdel-Motal, U.M.; Berg, L.; Rosen, A.; Bengtsson, M.; Thorpe, C.J.; Kihlberg, J.; Dahmen, J.; Magnusson, G.; Karlsson, K.A.; Jondal, M. Immunization with glycosylated Kb-binding peptides generates carbohydrate-specific, unrestricted cytotoxic T cells. Eur. J. Immunol. 1996, 26, 544–551, doi:10.1002/eji.1830260307.
[96]  Qiu, J.; Luo, P.; Wasmund, K.; Steplewski, Z.; Kieber-Emmons, T. Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines. Hybridoma 1999, 18, 103–112, doi:10.1089/hyb.1999.18.103.
[97]  Luo, P.; Canziani, G.; Cunto-Amesty, G.; Kieber-Emmons, T. A molecular basis for functional peptide mimicry of a carbohydrate antigen. J. Biol. Chem. 2000, 275, 16146–16154.
[98]  Pashov, A.; Perry, M.; Dyar, M.; Chow, M.; Kieber-Emmons, T. Carbohydrate mimotopes in the rational design of cancer vaccines. Curr. Top. Med. Chem. 2005, 5, 1171–1185, doi:10.2174/156802605774370928.
[99]  Monzavi-Karbassi, B.; Cunto-Amesty, G.; Luo, P.; Kieber-Emmons, T. Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery. Trends Biotechnol. 2002, 20, 207–214, doi:10.1016/S0167-7799(02)01940-6.
[100]  Monzavi-Karbassi, B.; Cunto-Amesty, G.; Luo, P.; Shamloo, S.; Blaszcyk-Thurin, M.; Kieber-Emmons, T. Immunization with a carbohydrate mimicking peptide augments tumor-specific cellular responses. Int. Immunol. 2001, 13, 1361–1371, doi:10.1093/intimm/13.11.1361.
[101]  Monzavi-Karbassi, B.; Luo, P.; Jousheghany, F.; Torres-Quinones, M.; Cunto-Amesty, G.; Artaud, C.; Kieber-Emmons, T. A mimic of tumor rejection antigen-associated carbohydrates mediates an antitumor cellular response. Cancer Res. 2004, 64, 2162–2166, doi:10.1158/0008-5472.CAN-03-1532.
[102]  Wondimu, A.; Zhang, T.; Kieber-Emmons, T.; Gimotty, P.; Sproesser, K.; Somasundaram, R.; Ferrone, S.; Tsao, C.Y.; Herlyn, D. Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice. Cancer Immunol. Immunother. 2008, 57, 1079–1089, doi:10.1007/s00262-007-0439-4.
[103]  Wierzbicki, A.; Gil, M.; Ciesielski, M.; Fenstermaker, R.A.; Kaneko, Y.; Rokita, H.; Lau, J.T.; Kozbor, D. Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. J. Immunol. 2008, 181, 6644–6653.
[104]  Monzavi-Karbassi, B.; Hennings, L.J.; Artaud, C.; Liu, T.; Jousheghany, F.; Pashov, A.; Murali, R.; Hutchins, L.F.; Kieber-Emmons, T. Preclinical studies of carbohydrate mimetic peptide vaccines for breast cancer and melanoma. Vaccine 2007, 25, 3022–3031, doi:10.1016/j.vaccine.2007.01.072.
[105]  Saijo, N.; Ozaki, A.; Beppu, Y.; Takahashi, K.; Fujita, J.; Sasaki, Y.; Nomori, H.; Kimata, M.; Shimizu, E.; Hoshi, A. Analysis of metastatic spread and growth of tumor cells in mice with depressed natural killer activity by anti-asialo GM1 antibody or anticancer agents. J. Cancer Res. Clin. Oncol. 1984, 107, 157–163, doi:10.1007/BF01032600.
[106]  Wiltrout, R.H.; Herberman, R.B.; Zhang, S.R.; Chirigos, M.A.; Ortaldo, J.R.; Green, K.M., Jr.; Talmadge, J.E. Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J. Immunol. 1985, 134, 4267–4275.
[107]  Bezouska, K.; Yuen, C.T.; O’Brien, J.; Childs, R.A.; Chai, W.; Lawson, A.M.; Drbal, K.; Fiserova, A.; Pospisil, M.; Feizi, T. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 1994, 372, 150–157, doi:10.1038/372150a0.
[108]  Brown, M.G.; Scalzo, A.A. NK gene complex dynamics and selection for NK cell receptors. Semin. Immunol. 2008, 20, 361–368, doi:10.1016/j.smim.2008.06.004.
[109]  Cheent, K.; Khakoo, S.I. Natural killer cells: Integrating diversity with function. Immunology 2009, 126, 449–457, doi:10.1111/j.1365-2567.2009.03045.x.
[110]  Biassoni, R. Natural killer cell receptors. Adv. Exp. Med. Biol. 2008, 640, 35–52, doi:10.1007/978-0-387-09789-3_4.
[111]  Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 2005, 23, 225–274, doi:10.1146/annurev.immunol.23.021704.115526.
[112]  Fauriat, C.; Ivarsson, M.A.; Ljunggren, H.G.; Malmberg, K.J.; Michaelsson, J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 2010, 115, 1166–1174, doi:10.1182/blood-2009-09-245746.
[113]  Foley, B.; de Santis, D.; Lathbury, L.; Christiansen, F.; Witt, C. KIR2DS1-mediated activation overrides NKG2A-mediated inhibition in HLA-C C2-negative individuals. Int. Immunol. 2008, 20, 555–563, doi:10.1093/intimm/dxn013.
[114]  Omidvar, N.; Wang, E.C.; Brennan, P.; Longhi, M.P.; Smith, R.A.; Morgan, B.P. Expression of glycosylphosphatidylinositol-anchored CD59 on target cells enhances human NK cell-mediated cytotoxicity. J. Immunol. 2006, 176, 2915–2923.
[115]  Tarek, N.; Le Luduec, J.B.; Gallagher, M.M.; Zheng, J.; Venstrom, J.M.; Chamberlain, E.; Modak, S.; Heller, G.; Dupont, B.; Cheung, N.K.; et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J. Clin. Invest. 2012, 122, 3260–3270, doi:10.1172/JCI62749.
[116]  Cheung, N.K.; Kushner, B.H.; Cheung, I.Y.; Kramer, K.; Canete, A.; Gerald, W.; Bonilla, M.A.; Finn, R.; Yeh, S.J.; Larson, S.M. Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J. Clin. Oncol. 1998, 16, 3053–3060.
[117]  Modak, S.; Cheung, N.K. Neuroblastoma: Therapeutic strategies for a clinical enigma. Cancer Treat. Rev. 2010, 36, 307–317, doi:10.1016/j.ctrv.2010.02.006.
[118]  Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334, doi:10.1056/NEJMoa0911123.
[119]  Alderson, K.L.; Luangrath, M.; Elsenheimer, M.M.; Gillies, S.D.; Navid, F.; Rakhmilevich, A.L.; Sondel, P.M. Enhancement of the anti-melanoma response of Hu14.18K322A by alphaCD40+ CpG. Cancer Immunol. Immunother. 2012, 15, 15.
[120]  Esser, R.; Muller, T.; Stefes, D.; Kloess, S.; Seidel, D.; Gillies, S.D.; Aperlo-Iffland, C.; Huston, J.S.; Uherek, C.; Schonfeld, K.; et al. NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J. Cell. Mol. Med. 2012, 16, 569–581, doi:10.1111/j.1582-4934.2011.01343.x.
[121]  Hombach, A.A.; Holzinger, A.; Abken, H. The weal and woe of costimulation in the adoptive therapy of cancer with chimeric antigen receptor (CAR)-redirected T cells. Curr. Mol. Med. 2012, 31, 31.
[122]  Albertsson, P.A.; Basse, P.H.; Hokland, M.; Goldfarb, R.H.; Nagelkerke, J.F.; Nannmark, U.; Kuppen, P.J. NK cells and the tumour microenvironment: Implications for NK-cell function and anti-tumour activity. Trends Immunol. 2003, 24, 603–609, doi:10.1016/j.it.2003.09.007.
[123]  Parkhurst, M.R.; Riley, J.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 2011, 17, 6287–6297, doi:10.1158/1078-0432.CCR-11-1347.
[124]  Kariya, Y.; Kawamura, C.; Tabei, T.; Gu, J. Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J. Biol. Chem. 2009, 285, 3330–3340, doi:10.1074/jbc.M109.038836.
[125]  Chung, T.W.; Kim, K.S.; Kang, S.K.; Lee, J.W.; Song, E.Y.; Chung, T.H.; Yeom, Y.I.; Kim, C.H. Remodeling of the major mouse xenoantigen, Galalpha1-3Galbeta1-4GlcNAc-R, by N-acetylglucosaminyltransferase-III. Mol. Cells 2003, 16, 343–353.
[126]  Hershkovitz, O.; Jivov, S.; Bloushtain, N.; Zilka, A.; Landau, G.; Bar-Ilan, A.; Lichtenstein, R.G.; Campbell, K.S.; van Kuppevelt, T.H.; Porgador, A. Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44. Biochemistry 2007, 46, 7426–7436, doi:10.1021/bi7000455.
[127]  Byrd, A.; Hoffmann, S.C.; Jarahian, M.; Momburg, F.; Watzl, C. Expression analysis of the ligands for the Natural Killer cell receptors NKp30 and NKp44. PLoS One 2007, 2, e1339, doi:10.1371/journal.pone.0001339.
[128]  Higai, K.; Ichikawa, A.; Matsumoto, K. Binding of sialyl Lewis X antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim. Biophys. Acta 2006, 1760, 1355–1363, doi:10.1016/j.bbagen.2006.03.015.
[129]  Ito, K.; Higai, K.; Shinoda, C.; Sakurai, M.; Yanai, K.; Azuma, Y.; Matsumoto, K. Unlike natural killer (NK) p30, natural cytotoxicity receptor NKp44 binds to multimeric alpha2,3-NeuNAc-containing N-glycans. Biol. Pharm. Bull. 2012, 35, 594–600, doi:10.1248/bpb.35.594.
[130]  Kovalenko, E.I.; Abakushina, E.; Telford, W.; Kapoor, V.; Korchagina, E.; Khaidukov, S.; Molotkovskaya, I.; Sapozhnikov, A.; Vlaskin, P.; Bovin, N. Clustered carbohydrates as a target for natural killer cells: A model system. Histochem. Cell. Biol. 2007, 127, 313–326, doi:10.1007/s00418-006-0240-z.
[131]  Bezouska, K.; Kren, V.; Kieburg, C.; Lindhorst, T.K. GlcNAc-terminated glycodendrimers form defined precipitates with the soluble dimeric receptor of rat natural killer cells, sNKR-P1A. FEBS Lett. 1998, 426, 243–247, doi:10.1016/S0014-5793(98)00340-8.
[132]  Benson, V.; Grobarova, V.; Richter, J.; Fiserova, A. Glycosylation regulates NK cell-mediated effector function through PI3K pathway. Int. Immunol. 2010, 22, 167–177, doi:10.1093/intimm/dxp123.
[133]  Grayson, G.; Ladisch, S. Immunosuppression by human gangliosides. II. Carbohydrate structure and inhibition of human NK activity. Cell. Immunol. 1992, 139, 18–29, doi:10.1016/0008-8749(92)90096-8.
[134]  Nicoll, G.; Avril, T.; Lock, K.; Furukawa, K.; Bovin, N.; Crocker, P.R. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 2003, 33, 1642–1648, doi:10.1002/eji.200323693.
[135]  Kawasaki, Y.; Ito, A.; Withers, D.A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010, 20, 1373–1379, doi:10.1093/glycob/cwq116.
[136]  Belisle, J.A.; Horibata, S.; Jennifer, G.A.; Petrie, S.; Kapur, A.; Andre, S.; Gabius, H.J.; Rancourt, C.; Connor, J.; Paulson, J.C.; et al. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol. Cancer 2010, 9, 118.
[137]  Yarema, K.J.; Bertozzi, C.R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 1998, 2, 49–61, doi:10.1016/S1367-5931(98)80035-5.
[138]  Guo, Z.; Wang, Q. Recent development in carbohydrate-based cancer vaccines. Curr. Opin. Chem. Biol. 2009, 13, 608–617, doi:10.1016/j.cbpa.2009.08.010.
[139]  Costa, C.; Zhao, L.; Burton, W.V.; Bondioli, K.R.; Williams, B.L.; Hoagland, T.A.; Ditullio, P.A.; Ebert, K.M.; Fodor, W.L. Expression of the human alpha1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J. 1999, 13, 1762–1773.
[140]  Artrip, J.H.; Kwiatkowski, P.; Michler, R.E.; Wang, S.F.; Tugulea, S.; Ankersmit, J.; Chisholm, L.; McKenzie, I.F.; Sandrin, M.S.; Itescu, S. Target cell susceptibility to lysis by human natural killer cells is augmented by alpha(1,3)-galactosyltransferase and reduced by alpha(1,2)-fucosyltransferase. J. Biol. Chem. 1999, 274, 10717–10722, doi:10.1074/jbc.274.16.10717.
[141]  Horvath-Arcidiacono, J.A.; Porter, C.M.; Bloom, E.T. Human NK cells can lyse porcine endothelial cells independent of their expression of Galalpha(1,3)-Gal and killing is enhanced by activation of either effector or target cells. Xenotransplantation 2006, 13, 318–327, doi:10.1111/j.1399-3089.2006.00316.x.
[142]  Dennis, J.W. N-linked oligosaccharide processing and tumor cell biology. Semin. Cancer Biol. 1991, 2, 411–420.
[143]  Humphries, M.J.; Matsumoto, K.; White, S.L.; Olden, K. Inhibition of experimental metastasis by castanospermine in mice: Blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res. 1986, 46, 5215–5222.
[144]  Chen, L.; Sundback, J.; Olofsson, S.; Jondal, M. Interference with O-glycosylation in RMA lymphoma cells leads to a reduced in vivo growth of the tumor. Int. J. Cancer 2006, 119, 1495–1500, doi:10.1002/ijc.21981.
[145]  Andre, S.; Sanchez-Ruderisch, H.; Nakagawa, H.; Buchholz, M.; Kopitz, J.; Forberich, P.; Kemmner, W.; Bock, C.; Deguchi, K.; Detjen, K.M.; et al. Tumor suppressor p16INK4a—Modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J. 2007, 274, 3233–3256.
[146]  Wen, Y.J.; Mancino, A.; Pashov, A.; Whitehead, T.; Stanley, J.; Kieber-Emmons, T. Antigen binding of human IgG Fabs mediate ERK-associated proliferation of human breast cancer cells. DNA Cell Biol. 2005, 24, 73–84, doi:10.1089/dna.2005.24.73.
[147]  Nobumoto, A.; Oomizu, S.; Arikawa, T.; Katoh, S.; Nagahara, K.; Miyake, M.; Nishi, N.; Takeshita, K.; Niki, T.; Yamauchi, A.; et al. Galectin-9 expands unique macrophages exhibiting plasmacytoid dendritic cell-like phenotypes that activate NK cells in tumor-bearing mice. Clin. Immunol. 2009, 130, 322–330, doi:10.1016/j.clim.2008.09.014.
[148]  Irie, R.F.; Morton, D.L. Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc. Natl. Acad. Sci. USA 1986, 83, 8694–8698, doi:10.1073/pnas.83.22.8694.
[149]  Takahashi, T.; Johnson, T.D.; Nishinaka, Y.; Morton, D.L.; Irie, R.F. IgM anti-ganglioside antibodies induced by melanoma cell vaccine correlate with survival of melanoma patients. J. Invest. Dermatol. 1999, 112, 205–209, doi:10.1046/j.1523-1747.1999.00493.x.
[150]  Perez, C.A.; Ravindranath, M.H.; Soh, D.; Gonzales, A.; Ye, W.; Morton, D.L. Serum anti-ganglioside IgM antibodies in soft tissue sarcoma: Clinical prognostic implications. Cancer J. 2002, 8, 384–394, doi:10.1097/00130404-200209000-00009.
[151]  Kawashima, I.; Yoshida, Y.; Taya, C.; Shitara, H.; Yonekawa, H.; Karasuyama, H.; Tada, N.; Furukawa, K.; Tai, T. Expansion of natural killer cells in mice transgenic for IgM antibody to ganglioside GD2: Demonstration of prolonged survival after challenge with syngeneic tumor cells. Int. J. Oncol. 2003, 23, 381–388.
[152]  Bao, Y.; Han, Y.; Chen, Z.; Xu, S.; Cao, X. IFN-alpha-producing PDCA-1+ Siglec-H-B cells mediate innate immune defense by activating NK cells. Eur. J. Immunol. 2011, 41, 657–668, doi:10.1002/eji.201040840.
[153]  Hsueh, E.C.; Gupta, R.K.; Qi, K.; Morton, D.L. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J. Clin. Oncol. 1998, 16, 2913–2920.
[154]  Baumgarth, N.; Herman, O.C.; Jager, G.C.; Brown, L.E.; Herzenberg, L.A.; Chen, J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000, 192, 271–280, doi:10.1084/jem.192.2.271.
[155]  Diamond, M.S.; Sitati, E.M.; Friend, L.D.; Higgs, S.; Shrestha, B.; Engle, M. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 2003, 198, 1853–1862, doi:10.1084/jem.20031223.
[156]  Brandlein, S.; Pohle, T.; Ruoff, N.; Wozniak, E.; Muller-Hermelink, H.K.; Vollmers, H.P. Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res. 2003, 63, 7995–8005.
[157]  Vollmers, H.P.; Brandlein, S. The “early birds”: Natural IgM antibodies and immune surveillance. Histol. Histopathol. 2005, 20, 927–937.
[158]  Yamada, K.; Kinoshita, M.; Hayakawa, T.; Nakaya, S.; Kakehi, K. Comparative studies on the structural features of O-glycans between leukemia and epithelial cell lines. J. Proteome Res. 2009, 8, 521–537, doi:10.1021/pr800710f.
[159]  Xin, X.; Higai, K.; Imaizumi, Y.; Suzuki, C.; Ito, K.; Itoh, A.; Matsumoto, S.; Azuma, Y.; Matsumoto, K. Natural killer group 2A (NKG2A) and natural killer group 2C (NKG2C) bind to sulfated glycans and alpha2,3-NeuAc-containing glycoproteins. Biol. Pharm. Bull. 2011, 34, 480–485, doi:10.1248/bpb.34.480.
[160]  Hennings, L.; Artaud, C.; Jousheghany, F.; Monzavi-Karbassi, B.; Pashov, A.; Kieber-Emmons, T. Carbohydrate mimetic peptides augment carbohydrate-reactive immune responses in the absence of immune pathology. Cancers 2011, 3, 4151–4169, doi:10.3390/cancers3044151.
[161]  Hirohashi, S.; Clausen, H.; Yamada, T.; Shimosato, Y.; Hakomori, S. Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: Its identification as Tn antigen. Proc. Natl. Acad. Sci. USA 1985, 82, 7039–7043.
[162]  Galili, U.; Buehler, J.; Shohet, S.B.; Macher, B.A. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J. Exp. Med. 1987, 165, 693–704, doi:10.1084/jem.165.3.693.
[163]  Sandrin, M.S.; Vaughan, H.A.; Xing, P.X.; McKenzie, I.F. Natural human anti-Gal alpha(1,3)Gal antibodies react with human mucin peptides. Glycoconj. J. 1997, 14, 97–105, doi:10.1023/A:1018521217276.
[164]  Manches, O.; Plumas, J.; Lui, G.; Chaperot, L.; Molens, J.P.; Sotto, J.J.; Bensa, J.C.; Galili, U. Anti-Gal-mediated targeting of human B lymphoma cells to antigen-presenting cells: A potential method for immunotherapy using autologous tumor cells. Haematologica 2005, 90, 625–634.
[165]  Corbiere, V.; Chapiro, J.; Stroobant, V.; Ma, W.; Lurquin, C.; Lethe, B.; van Baren, N.; van den Eynde, B.J.; Boon, T.; Coulie, P.G. Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. Cancer Res. 2011, 71, 1253–1262, doi:10.1158/0008-5472.CAN-10-2693.
[166]  Butschak, G.; Karsten, U. Isolation and characterization of thomsen-friedenreich-specific antibodies from human serum. Tumour Biol. 2002, 23, 113–122, doi:10.1159/000064026.
[167]  Andre, F.; Dieci, M.V.; Dubsky, P.; Sotiriou, C.; Curigliano, G.; Denkert, C.; Loi, S. Molecular pathways: Involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin. Cancer Res. 2013, 19, 28–33, doi:10.1158/1078-0432.CCR-11-2701.
[168]  Kurtenkov, O.; Klaamas, K.; Mensdorff-Pouilly, S.; Miljukhina, L.; Shljapnikova, L.; Chuzmarov, V. Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycotope in patients with gastric cancer: Relation to survival. Acta Oncol. 2007, 46, 316–323, doi:10.1080/02841860601055441.
[169]  Smorodin, E.P.; Kurtenkov, O.A.; Sergeyev, B.L.; Kodar, K.E.; Chuzmarov, V.I.; Afanasyev, V.P. Postoperative change of anti-Thomsen-Friedenreich and Tn IgG level: The follow-up study of gastrointestinal cancer patients. World J. Gastroenterol. 2008, 14, 4352–4358, doi:10.3748/wjg.14.4352.
[170]  Ragupathi, G.; Gathuru, J.; Livingston, P. Antibody inducing polyvalent cancer vaccines. Cancer Treat. Res. 2005, 123, 157–180, doi:10.1007/0-387-27545-2_7.
[171]  Johnston, D.; Bystryn, J.C. Heterogeneous antibody response to polyvalent melanoma vaccines in syngeneic mice. Cancer Immunol. Immunother. 2005, 54, 345–350, doi:10.1007/s00262-004-0606-9.
[172]  Liu, C.C.; Ye, X.S. Carbohydrate-based cancer vaccines: Target cancer with sugar bullets. Glycoconj. J. 2012, 29, 259–271, doi:10.1007/s10719-012-9399-9.
[173]  Yin, Z.; Huang, X. Recent development in carbohydrate based anti-cancer vaccines. J. Carbohydr. Chem. 2012, 31, 143–186.
[174]  Hevey, R.; Ling, C.C. Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med. Chem. 2012, 4, 545–584, doi:10.4155/fmc.11.193.
[175]  Zhu, J.; Warren, J.D.; Danishefsky, S.J. Synthetic carbohydrate-based anticancer vaccines: The Memorial Sloan-Kettering experience. Expert Rev. Vaccines 2009, 8, 1399–1413, doi:10.1586/erv.09.95.
[176]  Xu, Y.; Gendler, S.J.; Franco, A. Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J. Exp. Med. 2004, 199, 707–716, doi:10.1084/jem.20031865.
[177]  Singh, S.K.; Stephani, J.; Schaefer, M.; Kalay, H.; Garcia-Vallejo, J.J.; den Haan, J.; Saeland, E.; Sparwasser, T.; van Kooyk, Y. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol. Immunol. 2009, 47, 164–174, doi:10.1016/j.molimm.2009.09.026.
[178]  Singh, S.K.; Streng-Ouwehand, I.; Litjens, M.; Kalay, H.; Saeland, E.; van Kooyk, Y. Tumour-associated glycan modifications of antigen enhance MGL2 dependent uptake and MHC class I restricted CD8 T cell responses. Int. J. Cancer. 2011, 128, 1371–1383, doi:10.1002/ijc.25458.
[179]  Denda-Nagai, K.; Aida, S.; Saba, K.; Suzuki, K.; Moriyama, S.; Oo-Puthinan, S.; Tsuiji, M.; Morikawa, A.; Kumamoto, Y.; Sugiura, D.; et al. Distribution and function of macrophage galactose-type C-type lectin 2 (MGL2/CD301b): Efficient uptake and presentation of glycosylated antigens by dendritic cells. J. Biol. Chem. 2010, 285, 19193–19204, doi:10.1074/jbc.M110.113613.
[180]  Lakshminarayanan, V.; Thompson, P.; Wolfert, M.A.; Buskas, T.; Bradley, J.M.; Pathangey, L.B.; Madsen, C.S.; Cohen, P.A.; Gendler, S.J.; Boons, G.J. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc. Natl. Acad. Sci. USA 2012, 109, 261–266, doi:10.1073/pnas.1115166109.
[181]  Samsen, A.; Bogoevska, V.; Klampe, B.; Bamberger, A.M.; Lucka, L.; Horst, A.K.; Nollau, P.; Wagener, C. DC-SIGN and SRCL bind glycans of carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1): Recombinant human glycan-binding receptors as analytical tools. Eur. Cell Biol. 2010, 89, 87–94, doi:10.1016/j.ejcb.2009.11.018.
[182]  Saeland, E.; van Vliet, S.J.; Backstrom, M.; van den Berg, V.C.; Geijtenbeek, T.B.; Meijer, G.A.; van Kooyk, Y. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol. Immunother. 2007, 56, 1225–1236, doi:10.1007/s00262-006-0274-z.
[183]  Sato, K.; Imai, Y.; Higashi, N.; Kumamoto, Y.; Mukaida, N.; Irimura, T. Redistributions of macrophages expressing the macrophage galactose-type C-type lectin (MGL) during antigen-induced chronic granulation tissue formation. Int. Immunol. 2005, 17, 559–568, doi:10.1093/intimm/dxh235.
[184]  Chun, K.H.; Imai, Y.; Higashi, N.; Irimura, T. Migration of dermal cells expressing a macrophage C-type lectin during the sensitization phase of delayed-type hypersensitivity. J. Leukoc. Biol. 2000, 68, 471–478.
[185]  Becker, Y. Molecular immunological approaches to biotherapy of human cancers—A review, hypothesis and implications. Anticancer Res. 2006, 26, 1113–1134.
[186]  Botella-Estrada, R.; Escudero, M.; O’Connor, J.E.; Nagore, E.; Fenollosa, B.; Sanmartin, O.; Requena, C.; Guillen, C. Cytokine production by peripheral lymphocytes in melanoma. Eur. Cytokine Netw. 2005, 16, 47–55.
[187]  Knutson, K.L.; Disis, M.L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother. 2005, 54, 721–728, doi:10.1007/s00262-004-0653-2.
[188]  Van Die, I.; Cummings, R.D. Glycan gimmickry by parasitic helminths: A strategy for modulating the host immune response? Glycobiology 2009, 20, 2–12, doi:10.1093/glycob/cwp140.
[189]  Minkis, K.; Kavanagh, D.G.; Alter, G.; Bogunovic, D.; O’Neill, D.; Adams, S.; Pavlick, A.; Walker, B.D.; Brockman, M.A.; Gandhi, R.T.; et al. Type 2 Bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res. 2008, 68, 9441–9450, doi:10.1158/0008-5472.CAN-08-0900.
[190]  Monzavi-Karbassi, B.; Shamloo, S.; Kieber-Emmons, M.; Jousheghany, F.; Luo, P.; Lin, K.Y.; Cunto-Amesty, G.; Weiner, D.B.; Kieber-Emmons, T. Priming characteristics of peptide mimotopes of carbohydrate antigens. Vaccine 2003, 21, 753–760, doi:10.1016/S0264-410X(02)00703-X.
[191]  Pashov, A.D.; Plaxco, J.; Kaveri, S.V.; Monzavi-Karbassi, B.; Harn, D.; Kieber-Emmons, T. Multiple antigenic mimotopes of HIV carbohydrate antigens: Relating structure and antigenicity. J. Biol. Chem. 2006, 281, 29675–29683.
[192]  Hermsen, B.B.; Verheijen, R.H.; Menko, F.H.; Gille, J.J.; van Uffelen, K.; Blankenstein, M.A.; Meijer, S.; van Diest, P.J.; Kenemans, P.; von Mensdorff-Pouilly, S. Humoral immune responses to MUC1 in women with a BRCA1 or BRCA2 mutation. Eur. J. Cancer 2007, 43, 1556–1563, doi:10.1016/j.ejca.2007.04.007.
[193]  Klinman, N.R. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J. Exp. Med. 1972, 136, 241–257, doi:10.1084/jem.136.2.241.
[194]  Joncker, N.T.; Fernandez, N.C.; Treiner, E.; Vivier, E.; Raulet, D.H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: The rheostat model. J. Immunol. 2009, 182, 4572–4580, doi:10.4049/jimmunol.0803900.
[195]  Joncker, N.T.; Shifrin, N.; Delebecque, F.; Raulet, D.H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 2010, 207, 2065–2072, doi:10.1084/jem.20100570.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133