全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Vaccines  2013 

Perspectives for Developing New Tuberculosis Vaccines Derived from the Pathogenesis of Tuberculosis: I. Basic Principles, II. Preclinical Testing, and III. Clinical Testing

DOI: 10.3390/vaccines1010058

Keywords: tuberculosis, TB perspectives, TB pathogenesis, TB immunology, TB vaccines, delayed-type hypersensitivity, cell-mediated immunity, TB in rabbits, TB in mice, TB in guinea pigs, TB in humans, TB vaccine clinical trials, TB latency, TB reactivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Part I. Basic Principles. TB vaccines cannot prevent establishment of the infection. They can only prevent an early pulmonary tubercle from developing into clinical disease. A more effective new vaccine should optimize both cell-mediated immunity (CMI) and delayed-type hypersensitivity (DTH) better than any existing vaccine. The rabbit is the only laboratory animal in which all aspects of the human disease can be reproduced: namely, the prevention of most primary tubercles, the arrestment of most primary tubercles, the formation of the tubercle’s solid caseous center, the liquefaction of this center, the formation of cavities and the bronchial spread of the disease. In liquefied caseum, virulent tubercle bacilli can multiply extracellularly, especially in the liquefied caseum next to the inner wall of a cavity where oxygen is plentiful. The bacilli in liquefied caseum cannot be reached by the increased number of activated macrophages produced by TB vaccines. Therefore, new TB vaccines will have little or no effect on the extracellular bacillary growth within liquefied caseum. TB vaccines can only increase the host’s ability to stop the development of new TB lesions that arise from the bronchial spread of tubercle bacilli from the cavity to other parts of the lung. Therefore, effective TB vaccines do not prevent the reactivation of latent TB. Such vaccines only control (or reduce) the number of metastatic lesions that result after the primary TB lesion was reactivated by the liquefaction process. (Note: the large number of tubercle bacilli growing extracellularly in liquefied caseum gives rise to mutations that enable antimicrobial resistance—which is a major reason why TB still exists today). Part II. Preclinical Testing. The counting of grossly visible tubercles in the lungs of rabbits after the inhalation of virulent human-type tubercle bacilli is the most pertinent preclinical method to assess the efficacy of new TB vaccines (because an effective vaccine will stop the growth of developing tubercles before while they are still microscopic in size). Unfortunately, rabbits are rarely used in preclinical vaccine trials, despite their relative ease of handling and human-like response to this infection. Mice do not generate an effective DTH response, and guinea pigs do not generate an effective CMI response. Only the rabbits and most humans can establish the proper amount of DTH and CMI that is necessary to contain this infection. Therefore, rabbits should be included in all pre-clinical testing of new TB vaccines. New drugs (and/or immunological

References

[1]  Dannenberg, A.M., Jr.; Burstone, M.S.; Walter, P.C.; Kinsley, J.W. A histochemical study of phagocytic and enzymatic functions of rabbit mononuclear and polymorphonuclear exudate cells and alveolar macrophages. I. Survey and quantitation of enzymes and states of cellular activation. J. Cell. Biol. 1963, 17, 465–486.
[2]  Dannenberg, A.M., Jr. Macrophage turnover, division and activation within developing, peak and “healed” tuberculous lesions produced in rabbits by BCG. Tuberculosis (Edinb.) 2003, 83, 251–260, doi:10.1016/S1472-9792(03)00048-9.
[3]  Lurie, M.B. Resistance to Tuberculosis: Experimental Studies in Native and Acquired Defensive Mechanisms; Harvard University Press: Cambridge, MA, USA, 1964.
[4]  Dannenberg, A.M., Jr. Immunopathogenesis of pulmonary tuberculosis. Hosp. Pract. (Off. Ed.) 1993, 28, 51–58.
[5]  Courtade, E.T.; Tsuda, T.; Thomas, C.R.; Dannenberg, A.M. Capillary density in developing and healing tuberculous lesions produced by BCG in rabbits. A quantitative study. Am. J. Pathol. 1975, 78, 243–260.
[6]  Dannenberg, A.M., Jr. Pathogenesis of Human Tuberculosis: Insights from the Rabbit Model; American Society for Microbiology Press: Washington, DC, USA, 2006.
[7]  Shigenaga, T.; Dannenberg, A.M., Jr.; Lowrie, D.B.; Said, W.; Urist, M.J.; Abbey, H.; Schofield, B.H.; Mounts, P.; Sugisaki, K. Immune responses in tuberculosis: Antibodies and CD4-CD8 lymphocytes with vascular adhesion molecules and cytokines (chemokines) cause a rapid antigen-specific cell infiltration at sites of bacillus Calmette-Guerin reinfection. Immunology 2001, 102, 466–479, doi:10.1046/j.1365-2567.2001.01195.x.
[8]  Abbas, A.K.; Lichtman, A.H. Basic Immunology: Functions and Disorders of the Immune System, 3rd ed.; Saunders/Elsevier: Philadelphia, PA, USA, 2009.
[9]  Dannenberg, A.M., Jr. Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clin. Microbiol. Rev. 2010, 23, 781–794, doi:10.1128/CMR.00005-10.
[10]  Dannenberg, A.M., Jr. Lurie’s tubercle-count method to test TB vaccine efficacy in rabbits. Front. Biosci. 1998, 3, 27–33.
[11]  Dannenberg, A.M., Jr. Cellular hypersensitivity and cellular immunity in the pathogensis of tuberculosis: Specificity, systemic and local nature, and associated macrophage enzymes. Bacteriol. Rev. 1968, 32, 85–102.
[12]  Ando, M. Macrophage activation in tuberculin reactions of rabbits with primary BCG infection and reinfection. J. Reticuloendothel. Soc. 1973, 14, 132–145.
[13]  Rich, A.R. The Pathogenesis of Tuberculosis, 2nd ed.; Thomas: Springfield, IL, USA, 1951.
[14]  Canetti, C. The Tubercle Bacillus in the Pulmonary Lesion of Man: Histobacteriology and Its Bearing on the Therapy of Pulmonary Tuberculosis; Springer Publishing Co.: New York, NY, USA, 1955.
[15]  Dannenberg, A.M., Jr. Liquefaction and cavity formation in pulmonary TB: A simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb.) 2009, 89, 243–247.
[16]  Menzies, D. Interpretation of repeated tuberculin tests. Boosting, conversion and reversion. Am. J. Respir. Crit. Care Med. 1999, 159, 15–21.
[17]  Thompson, N.J.; Glassroth, J.L.; Snider, D.E., Jr.; Farer, L.S. The booster phenomenon in serial tuberculin testing. Am. Rev. Respir. Dis. 1979, 119, 587–597.
[18]  Cruz, A.; Fraga, A.G.; Fountain, J.J.; Rangel-Moreno, J.; Torrado, E.; Saraiva, M.; Pereira, D.R.; Randall, T.D.; Pedrosa, J.; Cooper, A.M.; et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 2010, 207, 1609–1616, doi:10.1084/jem.20100265.
[19]  Tuberculosis Vaccine Candidates. Available online: http://www.stoptb.org/wg/new_vaccines./documents/TB%20Vaccine%20Pipeline_rAug%202012.pdf (accessed on 24 September 2012).
[20]  Seibert, F.B.; Crumb, C.; Dufour, E.H. Antigenic differences in two tuberculin protein fractions. J. Infect. Dis. 1951, 89, 252–258, doi:10.1093/infdis/89.3.252.
[21]  Kaufmann, S.H.; Hussey, G.; Lambert, P.H. New vaccines for tuberculosis. Lancet 2010, 375, 2110–2119.
[22]  Raviglione, M.; Marais, B.; Floyd, K.; Lonnroth, K.; Getahun, H.; Migliori, G.B.; Harries, A.D.; Nunn, P.; Lienhardt, C.; Graham, S.; et al. Scaling up interventions to achieve global tuberculosis control: Progress and new developments. Lancet 2012, 379, 1902–1913.
[23]  Kupferschmidt, K. Infectious disease. Taking a new shot at a TB vaccine. Science 2011, 334, 1488–1490, doi:10.1126/science.334.6062.1488.
[24]  Lurie, M.B.; Heppleston, A.G.; Abramson, S.; Swartz, I.B. Evaluation of the method of quantitative airborne infection and its use in the study of the pathogenesis of tuberculosis. Am. Rev. Tuberc. 1950, 61, 765–797.
[25]  Dannenberg, A.M., Jr.; Bishai, W.R.; Parrish, N.; Ruiz, R.; Johnson, W.; Zook, B.C.; Boles, J.W.; Pitt, L.M. Efficacies of BCG and vole bacillus (Mycobacterium microti) vaccines in preventing clinically apparent pulmonary tuberculosis in rabbits: A preliminary report. Vaccine 2000, 19, 796–800, doi:10.1016/S0264-410X(00)00300-5.
[26]  Manabe, Y.C.; Dannenberg, A.M., Jr.; Tyagi, S.K.; Hatem, C.L.; Yoder, M.; Woolwine, S.C.; Zook, B.C.; Pitt, M.L.; Bishai, W.R. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect. Immun. 2003, 71, 6004–6011.
[27]  Dorman, S.E.; Hatem, C.L.; Tyagi, S.; Aird, K.; Lopez-Molina, J.; Pitt, M.L.; Zook, B.C.; Dannenberg, A.M., Jr.; Bishai, W.R.; Manabe, Y.C. Susceptibility to tuberculosis: Clues from studies with inbred and outbred New Zealand White rabbits. Infect. Immun. 2004, 72, 1700–1705, doi:10.1128/IAI.72.3.1700-1705.2004.
[28]  Subbian, S.; Tsenova, L.; O'Brien, P.; Yang, G.; Koo, M.S.; Peixoto, B.; Fallows, D.; Zeldis, J.B.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am. J. Pathol. 2011, 179, 289–301, doi:10.1016/j.ajpath.2011.03.039.
[29]  Via, L.E.; Schimel, D.; Weiner, D.M.; Dartois, V.; Dayao, E.; Cai, Y.; Yoon, Y.S.; Dreher, M.R.; Kastenmayer, R.J.; Laymon, C.M.; et al. Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [(1)(8)F]2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography. Antimicrob. Agents Chemother. 2012, 56, 4391–4402, doi:10.1128/AAC.00531-12.
[30]  Dey, B.; Luna, B.; Miller-Jaster, K.; Foster, B.; Bagci, U.; Klunk, M.; Mollura, D.J.; Jain, S.K.; Bishai, W.R. Qualitative and Quantitative Analysis of Inflammation in Pulmonary Tuberculosis in Rabbit using F18-FDG-PET/CT Imaging: A multi-Parametric Approach. In Molecular Imaging of Infectious Diseases: Current Status and Future Challenges; National Institutes of Health: Bethesda, MD, USA, 2012.
[31]  Luna, B.; Kubler, A.; Larsson, C.; Klunk, M.; Jain, S.K.; Bishai, W.R. Cavity Development in the Rabbit Model of Tuberculosis is Independent of Inflammation. In Molecular Imaging of Infectious Diseases: Current Status and Future Challenges; National Institutes of Health: Bethesda, MD, USA, 2012.
[32]  Brodin, P.; Demangel, C.; Cole, S.T. Introduction to functional genomics of the Mycobacterum tuberculosis complex. In Tuberculosis and the Tubercle Bacillus; Jacobs, W.R., Jr., Ed.; ASM Press: Washington, DC, USA, 2005; pp. 143–153.
[33]  Murry, J.P.; Pandey, A.K.; Sassetti, C.M.; Rubin, E.J. Phthiocerol dimycocerosate transport is required for resisting interferon-gamma-independent immunity. J. Infect. Dis. 2009, 200, 774–782, doi:10.1086/605128.
[34]  Volkman, H.E.; Pozos, T.C.; Zheng, J.; Davis, J.M.; Rawls, J.F.; Ramakrishnan, L. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 2010, 327, 466–469.
[35]  Russell, D.G. Mycobacterium tuberculosis: The indigestible microbe. In Tuberculosis and the Tubercle Bacillus; Cole, S.T., Eisenach, K.D., McMurray, D.N., Jacobs, W.R., Jr., Eds.; ASM Press: Washington, DC, USA, 2005; pp. 427–435.
[36]  Converse, P.J.; Karakousis, P.C.; Klinkenberg, L.G.; Kesavan, A.K.; Ly, L.H.; Allen, S.S.; Grosset, J.H.; Jain, S.K.; Lamichhane, G.; Manabe, Y.C.; et al. Role of the dosR-dosS Two-Component Regulatory System in Mycobacterium tuberculosis Virulence in Three Animal Models. Infect. Immun. 2009, 77, 1230–1237, doi:10.1128/IAI.01117-08.
[37]  Jain, S.K.; Hernandez-Abanto, S.M.; Cheng, Q.-J.; Singh, P.; Ly, L.H.; Klinkenberg, L.G.; Morrison, N.E.; Converse, P.J.; Nuermberger, E.; Grosset, J.; et al. Accelerated detection of Mycobacterium tuberculosis genes essential for bacterial survival in guinea pigs, compared with mice. J. Infect. Dis. 2007, 195, 1634–1642, doi:10.1086/517526.
[38]  Converse, P.J.; Dannenberg, A.M., Jr.; Estep, J.E.; Sugisaki, K.; Abe, Y.; Schofield, B.H.; Pitt, M.L. Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect. Immun. 1996, 64, 4776–4787.
[39]  Converse, P.J.; Dannenberg, A.M., Jr.; Shigenaga, T.; McMurray, D.N.; Phalen, S.W.; Stanford, J.L.; Rook, G.A.; Koru-Sengul, T.; Abbey, H.; Estep, J.E.; et al. Pulmonary bovine-type tuberculosis in rabbits: Bacillary virulence, inhaled dose effects, tuberculin sensitivity, and Mycobacterium vaccae immunotherapy. Clin. Diagn. Lab. Immunol. 1998, 5, 871–881.
[40]  Smith, P.G.; Moss, A.R. Epidemiology of tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control; Bloom, B.R., Ed.; American Society for Microbiology Press: Washington, DC, USA, 1994; pp. 47–59.
[41]  Bloom, B.R.; Fine, P.E.M. The BCG Experience: Implications for future vaccines for tuberculosis. In Tuberculosis: Pathogenesis, Protection, and Control; Bloom, B.R., Ed.; American Society for Microbiology Press: Washington, DC, USA, 1994; pp. 531–557.
[42]  Aronson, J.D. The status of BCG vaccination in the United States and Canada. Bibl. Tuberc. 1957, 13, 131–153.
[43]  Aronson, J.D.; Aronson, C.F.; Taylor, H.C. A twenty-year appraisal of BCG vaccination in the control of tuberculosis. AMA Arch. Intern. Med. 1958, 101, 881–893, doi:10.1001/archinte.1958.00260170037006.
[44]  Medical Research Council. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Bull. World Health Organ. 1972, 46, 371–385.
[45]  Rosenthal, S.R.; Loewinsohne, E.; Graham, M.L.; Liveright, D.; Thorne, G.; Johnson, V. BCG vaccination against tuberculosis in Chicago. A twenty-year study statistically analyzed. Pediatrics 1961, 28, 622–641.
[46]  Aronson, N.E.; Santosham, M.; Comstock, G.W.; Howard, R.S.; Moulton, L.H.; Rhoades, E.R.; Harrison, L.H. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: A 60-year follow-up study. JAMA 2004, 291, 2086–2091.
[47]  Crampin, A.C.; Glynn, J.R.; Fine, P.E. What has Karonga taught us? Tuberculosis studied over three decades. Int. J. Tuberc. Lung Dis. 2009, 13, 153–164.
[48]  Barnes, P.F.; Bloch, A.B.; Davidson, P.T.; Snider, D.E., Jr. Tuberculosis in patients with human immunodeficiency virus infection. N. Engl. J. Med. 1991, 324, 1644–1650.
[49]  Zevallos, K.; Vergara, K.C.; Gilman, R.H.; Kosek, M.; Yori, P.; Banda, C.; Herrera, B.; Valencia, T.; Vidal, C.; Meza, G.; et al. Human cell-mediated immunity against Mycobacterium tuberculosis antigens is augmented by treating intestinal helminths. Am. J. Trop. Med. Hyg. 2006, 75, 313.
[50]  Elias, D.; Wolday, D.; Akuffo, H.; Petros, B.; Bronner, U.; Britton, S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin. Exp. Immunol. 2001, 123, 219–225, doi:10.1046/j.1365-2249.2001.01446.x.
[51]  Cegielski, J.P.; McMurray, D.N. The relationship between malnutrition and tuberculosis: Evidence from studies in humans and experimental animals. Int. J. Tuberc. Lung Dis. 2004, 8, 286–298.
[52]  Liu, P.T.; Stenger, S.; Tang, D.H.; Modlin, R.L. Cutting edge: Vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 2007, 179, 2060–2063.
[53]  Colditz, G.A.; Brewer, T.F.; Berkey, C.S.; Wilson, M.E.; Burdick, E.; Fineberg, H.V.; Mosteller, F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994, 271, 698–702, doi:10.1001/jama.1994.03510330076038.
[54]  Comstock, G.W. Field trials of tuberculosis vaccines: How could we have done them better? Control Clin. Trials 1994, 15, 247–276, doi:10.1016/0197-2456(94)90042-6.
[55]  Fine, P.E.M. BCG Vaccines and Vaccination. In Tuberculosis: A Comprehensive International Approach; Reichmann, L.R., Hershfield, E.S., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 503–522.
[56]  Comstock, G.W.; Woolpert, S.F. Tuberculin conversions: True or false? Am. Rev. Respir. Dis. 1978, 118, 215–217.
[57]  Tuberculosis Research Centre (ICMR), Chennai. Fifteen year follow up of trial of BCG vaccines in south India for tuberculosis prevention. Indian J. Med. Res. 1999, 110, 56–69.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133