The skin is an attractive tissue for vaccination in a clinical setting due to the accessibility of the target, the ease of monitoring and most importantly the immune competent nature of the dermal tissue. While skin electroporation offers an exciting and novel future methodology for the delivery of DNA vaccines in the clinic, little is known about the actual mechanism of the approach and the elucidation of the resulting immune responses. To further understand the mechanism of this platform, the expression kinetics and localization of a reporter plasmid delivered via a surface dermal electroporation (SEP) device as well as the effect that this treatment would have on the resident immune cells in that tissue was investigated. Initially a time course (day 0 to day 21) of enhanced gene delivery with electroporation (EP) was performed to observe the localization of green fluorescent protein (GFP) expression and the kinetics of its appearance as well as clearance. Using gross imaging, GFP expression was not detected on the surface of the skin until 8 h post treatment. However, histological analysis by fluorescent microscopy revealed GFP positive cells as early as 1 h after plasmid delivery and electroporation. Peak GFP expression was observed at 24 h and the expression was maintained in skin for up to seven days. Using an antibody specific for a keratinocyte cell surface marker, reporter gene positive keratinocytes in the epidermis were identified. H&E staining of treated skin sections demonstrated an influx of monocytes and granulocytes at the EP site starting at 4 h and persisting up to day 14 post treatment. Immunological staining revealed a significant migration of lymphocytic cells to the EP site, congregating around cells expressing the delivered antigen. In conclusion, this study provides insights into the expression kinetics following EP enhanced DNA delivery targeting the dermal space. These findings may have implications in the future to design efficient DNA vaccination strategies for the clinic.
References
[1]
Tobin, D.J. Biochemistry of human skin—Our brain on the outside. Chem. Soc. Rev. 2006, 35, 52–67, doi:10.1039/b505793k.
[2]
Toebak, M.J.; Gibbs, S.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T. Dendritic cells: Biology of the skin. Contact Derm. 2009, 60, 2–20, doi:10.1111/j.1600-0536.2008.01443.x.
[3]
Nickoloff, B.J.; Turka, L.A.; Mitra, R.S.; Nestle, F.O. Direct and indirect control of T-cell activation by keratinocytes. J. Invest. Dermatol. 1995, 105, 25S–29S, doi:10.1038/jid.1995.6.
[4]
Romani, N.; Holzmann, S.; Tripp, C.H.; Koch, F.; Stoitzner, P. Langerhans cells—Dendritic cells of the epidermis. APMIS 2003, 111, 725–740.
[5]
Weiner, D.B. DNA vaccines: Crossing a line in the sand. Introduction to special issue. Vaccine 2008, 26, 5073–5074, doi:10.1016/j.vaccine.2008.07.024.
[6]
Donnelly, J.J.; Ulmer, J.B.; Liu, M.A. DNA vaccines. Life Sci. 1997, 60, 163–172, doi:10.1016/S0024-3205(96)00502-4.
[7]
Andre, S.; Seed, B.; Eberle, J.; Schraut, W.; Bultmann, A.; Haas, J. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 1998, 72, 1497–1503.
[8]
Sardesai, N.Y.; Weiner, D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429, doi:10.1016/j.coi.2011.03.008.
[9]
Martinon, F.; Kaldma, K.; Sikut, R.; Culina, S.; Romain, G.; Tuomela, M.; Adojaan, M.; Mannik, A.; Toots, U.; Kivisild, T.; et al. Persistent immune responses induced by a human immunodeficiency virus DNA vaccine delivered in association with electroporation in the skin of nonhuman primates. Hum. Gene Ther. 2009, 20, 1291–1307, doi:10.1089/hum.2009.044.
[10]
Song, J.M.; Kim, Y.C.; Lipatov, A.S.; Pearton, M.; Davis, C.T.; Yoo, D.G.; Park, K.M.; Chen, L.M.; Quan, F.S.; Birchall, J.C.; et al. Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B- and T-cell responses in mice. Clin. Vaccine Immunol. 2010, 17, 1381–1389, doi:10.1128/CVI.00100-10.
[11]
Mathiesen, I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 1999, 6, 508–514, doi:10.1038/sj.gt.3300847.
[12]
Otten, G.; Schaefer, M.; Doe, B.; Liu, H.; Srivastava, I.; zur Megede, J.; O’Hagan, D.; Donnelly, J.; Widera, G.; Rabussay, D.; et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 2004, 22, 2489–2493, doi:10.1016/j.vaccine.2003.11.073.
[13]
Otten, G.R.; Schaefer, M.; Doe, B.; Liu, H.; Megede, J.Z.; Donnelly, J.; Rabussay, D.; Barnett, S.; Ulmer, J.B. Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine 2006, 24, 4503–4509, doi:10.1016/j.vaccine.2005.08.017.
Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 2000, 164, 4635–4640.
[16]
Kopycinski, J.; Cheeseman, H.; Ashraf, A.; Gill, D.; Hayes, P.; Hannaman, D.; Gilmour, J.; Cox, J.H.; Vasan, S. A DNA-based candidate hiv vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. Clin. Vaccine Immunol. 2012, 19, 1557–1559, doi:10.1128/CVI.00327-12.
[17]
Diaz, C.M.; Chiappori, A.; Aurisicchio, L.; Bagchi, A.; Clark, J.; Dubey, S.; Fridman, A.; Fabregas, J.C.; Marshall, J.; Scarselli, E.; et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J. Transl. Med. 2013, 11, e62, doi:10.1186/1479-5876-11-62.
[18]
Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P.; et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8+ T-cell responses and increases PSA doubling time. Cancer Immunol. Immunother. 2012, 61, 2161–2170, doi:10.1007/s00262-012-1270-0.
[19]
Vasan, S.; Hurley, A.; Schlesinger, S.J.; Hannaman, D.; Gardiner, D.F.; Dugin, D.P.; Boente-Carrera, M.; Vittorino, R.; Caskey, M.; Andersen, J.; et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 2011, 6, e19252, doi:10.1371/journal.pone.0019252.
[20]
Bagarazzi, M.L.; Yan, J.; Morrow, M.P.; Shen, X.; Parker, R.L.; Lee, J.C.; Giffear, M.; Pankhong, P.; Khan, A.S.; Broderick, K.E.; et al. Immunotherapy against HPV16/18 generates potent Th1 and cytotoxic cellular immune responses. Sci. Transl. Med. 2012, doi:10.1126/scitranslmed.3004414.
[21]
Zhang, L.; Li, L.; Hoffmann, G.A.; Hoffman, R.M. Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: An approach to gene therapy of skin aging and other diseases. Biochem. Biophys. Res. Commun. 1996, 220, 633–636, doi:10.1006/bbrc.1996.0455.
[22]
Heller, L.C.; Jaroszeski, M.J.; Coppola, D.; McCray, A.N.; Hickey, J.; Heller, R. Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther. 2007, 14, 275–280, doi:10.1038/sj.gt.3302867.
[23]
Donate, A.; Coppola, D.; Cruz, Y.; Heller, R. Evaluation of a novel non-penetrating electrode for use in DNA vaccination. PLoS One 2011, 6, e19181.
[24]
Heller, R.; Cruz, Y.; Heller, L.C.; Gilbert, R.A.; Jaroszeski, M.J. Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum. Gene Ther. 2010, 21, 357–362, doi:10.1089/hum.2009.065.
[25]
Zhang, L.; Nolan, E.; Kreitschitz, S.; Rabussay, D.P. Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim. Biophys. Acta 2002, 1572, 1–9, doi:10.1016/S0304-4165(02)00270-2.
[26]
Broderick, K.E.; Kardos, T.; McCoy, J.R.; Fons, M.P.; Kemmerrer, S.; Sardesai, N.Y. Piezoelectric permeabilization of mammalian dermal tissue for in vivo DNA delivery leads to enhanced protein expression and increased immunogenicity. Hum. Vaccin. 2011, 7, 22–28, doi:10.4161/hv.7.0.14559.
[27]
Connolly, R.J.; Chapman, T.; Hoff, A.M.; Kutzler, M.A.; Jaroszeski, M.J.; Ugen, K.E. Non-contacthelium-based plasma for delivery of DNA vaccines. Enhancement of humoral and cellular immune responses. Hum. Vaccin. Immunother. 2012, 8, 1729–1733, doi:10.4161/hv.21624.
[28]
Connolly, R.J.; Rey, J.I.; Lambert, V.M.; Wegerif, G.; Jaroszeski, M.J.; Ugen, K.E. Enhancement of antigen specific humoral immune responses after delivery of a DNA plasmid based vaccine through a contact-independent helium plasma. Vaccine 2011, 29, 6781–6784, doi:10.1016/j.vaccine.2010.12.054.
[29]
Roos, A.K.; Eriksson, F.; Timmons, J.A.; Gerhardt, J.; Nyman, U.; Gudmundsdotter, L.; Brave, A.; Wahren, B.; Pisa, P. Skin electroporation: Effects on transgene expression, DNA persistence and local tissue environment. PLoS One 2009, 4, e7226, doi:10.1371/journal.pone.0007226.
[30]
Roos, A.K.; Moreno, S.; Leder, C.; Pavlenko, M.; King, A.; Pisa, P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther. 2006, 13, 320–327, doi:10.1016/j.ymthe.2005.08.005.
[31]
El-Kamary, S.S.; Billington, M.; Deitz, S.; Colby, E.; Rhinehart, H.; Wu, Y.; Blackwelder, W.; Edelman, R.; Lee, A.; King, A. Safety and tolerability of the Easy Vax clinical epidermal electroporation system in healthy adults. Mol. Ther. 2012, 20, 214–220, doi:10.1038/mt.2011.235.
[32]
Hirao, L.A.; Wu, L.; Khan, A.S.; Satishchandran, A.; Draghia-Akli, R.; Weiner, D.B. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine 2008, 26, 440–448, doi:10.1016/j.vaccine.2007.10.041.
[33]
Laddy, D.J.; Yan, J.; Khan, A.S.; Andersen, H.; Cohn, A.; Greenhouse, J.; Lewis, M.; Manischewitz, J.; King, L.R.; Golding, H.; et al. Electroporation of synthetic DNA antigens offers protection in nonhuman primates challenged with highly pathogenic avian influenza virus. J. Virol. 2009, 83, 4624–4630, doi:10.1128/JVI.02335-08.
[34]
Hirao, L.A.; Draghia-Akli, R.; Prigge, J.T.; Yang, M.; Satishchandran, A.; Wu, L.; Hammarlund, E.; Khan, A.S.; Babas, T.; Rhodes, L.; et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J. Infect. Dis. 2010, 203, 95–102.
[35]
Diehl, M.C.; Lee, J.C.; Daniels, S.E.; Tebas, P.; Khan, A.; Giffear, M.; Sardesai, N.Y.; Bagarazzi, M.L. Tolerability of intramuscular and intradermal delivery by cellectra? adaptive constant current electroporation device in healthy volunteers. Hum. Vaccin. Immunother. 2013, 9, 1–6, doi:10.4161/hv.23606.
[36]
Broderick, K.E.; Shen, X.; Soderholm, J.; Lin, F.; McCoy, J.; Khan, A.S.; Yan, J.; Morrow, M.P.; Patel, A.; Kobinger, G.P.; et al. Prototype development and preclinical immunogenicity analysis of a novel minimally invasive electroporation device. Gene Ther. 2011, 18, 258–265, doi:10.1038/gt.2010.137.
[37]
Lin, F.; Shen, X.; Kichaev, G.; Mendoza, J.M.; Yang, M.; Armendi, P.; Yan, J.; Kobinger, G.P.; Bello, A.; Khan, A.S.; et al. Optimization of electroporation-enhanced intradermal delivery of DNA vaccine using a minimally invasive surface device. Hum. Gene Ther. Methods 2012, 23, 157–168, doi:10.1089/hgtb.2011.209.
[38]
Gronevik, E.; von Steyern, F.V.; Kalhovde, J.M.; Tjelle, T.E.; Mathiesen, I. Gene expression and immune response kinetics using electroporation-mediated DNA delivery to muscle. J. Gene Med. 2005, 7, 218–227.