全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Vaccines  2013 

Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

DOI: 10.3390/vaccines1030305

Keywords: DNA vaccine, HIV-1, animal models, envelope, neutralizing antibodies

Full-Text   Cite this paper   Add to My Lib

Abstract:

HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

References

[1]  Van Gils, M.J.; Sanders, R.W. Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology 2013, 435, 46–56, doi:10.1016/j.virol.2012.10.004.
[2]  Wren, L.; Kent, S.J. HIV vaccine efficacy trial: Glimmers of hope and the potential role of antibody-dependent cellular cytotoxicity. Hum. Vaccines 2011, 7, 466–473, doi:10.4161/hv.7.4.14123.
[3]  Burton, D.R.; Ahmed, R.; Barouch, D.H.; Butera, S.T.; Crotty, S.; Godzik, A.; Kaufmann, D.E.; McElrath, M.J.; Nussenzweig, M.C.; Pulendran, B.; et al. A blueprint for HIV vaccine discovery. Cell Host Microbe 2012, 12, 396–407, doi:10.1016/j.chom.2012.09.008.
[4]  Binley, J.M.; Sanders, R.W.; Clas, B.; Schuelke, N.; Master, A.; Guo, Y.; Kajumo, F.; Anselma, D.J.; Maddon, P.J.; Olson, W.C.; et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 2000, 74, 627–643, doi:10.1128/JVI.74.2.627-643.2000.
[5]  Sanders, R.W.; Vesanen, M.; Schuelke, N.; Master, A.; Schiffner, L.; Kalyanaraman, R.; Paluch, M.; Berkhout, B.; Maddon, P.J.; Olson, W.C.; et al. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 2002, 76, 8875–8889, doi:10.1128/JVI.76.17.8875-8889.2002.
[6]  Yang, X.; Farzan, M.; Wyatt, R.; Sodroski, J. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 2000, 74, 5716–5725.
[7]  Yang, X.; Florin, L.; Farzan, M.; Kolchinsky, P.; Kwong, P.D.; Sodroski, J.; Wyatt, R. Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J. Virol. 2000, 74, 4746–4754.
[8]  Binley, J.M.; Sanders, R.W.; Master, A.; Cayanan, C.S.; Wiley, C.L.; Schiffner, L.; Travis, B.; Kuhmann, S.; Burton, D.R.; Hu, S.L.; et al. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 2002, 76, 2606–2616, doi:10.1128/JVI.76.6.2606-2616.2002.
[9]  Beddows, S.; Franti, M.; Dey, A.K.; Kirschner, M.; Iyer, S.P.; Fisch, D.C.; Ketas, T.; Yuste, E.; Desrosiers, R.C.; Klasse, P.J.; et al. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120. Virology 2007, 360, 329–340, doi:10.1016/j.virol.2006.10.032.
[10]  Beddows, S.; Schulke, N.; Kirschner, M.; Barnes, K.; Franti, M.; Michael, E.; Ketas, T.; Sanders, R.W.; Maddon, P.J.; Olson, W.C.; et al. Evaluating the immunogenicity of a disulfide-stabilized, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 2005, 79, 8812–8827.
[11]  Kang, Y.K.; Andjelic, S.; Binley, J.M.; Crooks, E.T.; Franti, M.; Iyer, S.P.; Donovan, G.P.; Dey, A.K.; Zhu, P.; Roux, K.H.; et al. Structural and immunogenicity studies of a cleaved, stabilized envelope trimer derived from subtype a HIV-1. Vaccine 2009, 27, 5120–5132, doi:10.1016/j.vaccine.2009.06.037.
[12]  Kutzler, M.A.; Weiner, D.B. DNA vaccines: Ready for prime time? Nat. Rev. Genet. 2008, 9, 776–788, doi:10.1038/nrg2432.
[13]  Liu, M.A. DNA vaccines: An historical perspective and view to the future. Immunol. Rev. 2011, 239, 62–84, doi:10.1111/j.1600-065X.2010.00980.x.
[14]  Hutnick, N.A.; Myles, D.J.; Bian, C.B.; Muthumani, K.; Weiner, D.B. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr. Opin. Virol. 2011, 1, 233–240, doi:10.1016/j.coviro.2011.08.003.
[15]  Gudmundsdotter, L.; Wahren, B.; Haller, B.K.; Boberg, A.; Edback, U.; Bernasconi, D.; Butto, S.; Gaines, H.; Imami, N.; Gotch, F.; et al. Amplified antigen-specific immune responses in HIV-1 infected individuals in a double blind DNA immunization and therapy interruption trial. Vaccine 2011, 29, 5558–5566, doi:10.1016/j.vaccine.2011.01.064.
[16]  Rosenberg, E.S.; Graham, B.S.; Chan, E.S.; Bosch, R.J.; Stocker, V.; Maenza, J.; Markowitz, M.; Little, S.; Sax, P.E.; Collier, A.C.; et al. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection. PLoS One 2010, 5, e10555, doi:10.1371/journal.pone.0010555.
[17]  Wilson, C.C.; Newman, M.J.; Livingston, B.D.; MaWhinney, S.; Forster, J.E.; Scott, J.; Schooley, R.T.; Benson, C.A. Clinical phase 1 testing of the safety and immunogenicity of an epitope-based DNA vaccine in human immunodeficiency virus type 1-infected subjects receiving highly active antiretroviral therapy. Clin. Vaccine Immunol. 2008, 15, 986–994, doi:10.1128/CVI.00492-07.
[18]  Corbet, S.; Vinner, L.; Hougaard, D.M.; Bryder, K.; Nielsen, H.V.; Nielsen, C.; Fomsgaard, A. Construction, biological activity, and immunogenicity of synthetic envelope DNA vaccines based on a primary, ccr5-tropic, early HIV type I isolate (bx08) with human codons. AIDS Res. Hum. Retroviruses 2000, 16, 1997–2008, doi:10.1089/088922200750054738.
[19]  Vinner, L.; Nielsen, H.V.; Bryder, K.; Corbet, S.; Nielsen, C.; Fomsgaard, A. Gene gun DNA vaccination with rev-independent synthetic HIV-I gp160 envelope gene using mammalian codons. Vaccine 1999, 17, 2166–2175, doi:10.1016/S0264-410X(98)00474-5.
[20]  Otten, G.; Schaefer, M.; Doe, B.; Liu, H.; Srivastava, I.; zur Megede, J.; O’Hagan, D.; Donnelly, J.; Widera, G.; Rabussay, D.; et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 2004, 22, 2489–2493, doi:10.1016/j.vaccine.2003.11.073.
[21]  Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 2000, 164, 4635–4640.
[22]  Hallengard, D.; Brave, A.; Isaguliants, M.; Blomberg, P.; Enger, J.; Stout, R.; King, A.; Wahren, B. A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines. Genet. Vaccines Ther. 2012, 10, 5.
[23]  Bragstad, K.; Vinner, L.; Hansen, M.S.; Nielsen, J.; Fomsgaard, A. A polyvalent influenza a DNA vaccine induces heterologous immunity and protects pigs against pandemic a(h1n1)pdm09 virus infection. Vaccine 2013, 31, 2281–2288, doi:10.1016/j.vaccine.2013.02.061.
[24]  Wu, T.T.; Johnson, G.; Kabat, E.A. Length distribution of cdrh3 in antibodies. Proteins 1993, 16, 1–7, doi:10.1002/prot.340160102.
[25]  Johnson, G.; Wu, T.T. Preferred cdrh3 lengths for antibodies with defined specificities. Int. Immunol. 1998, 10, 1801–1805, doi:10.1093/intimm/10.12.1801.
[26]  Ofek, G.; Tang, M.; Sambor, A.; Katinger, H.; Mascola, J.R.; Wyatt, R.; Kwong, P.D. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2f5 in complex with its gp41 epitope. J. Virol. 2004, 78, 10724–10737.
[27]  Cardoso, R.M.; Zwick, M.B.; Stanfield, R.L.; Kunert, R.; Binley, J.M.; Katinger, H.; Burton, D.R.; Wilson, I.A. Broadly neutralizing anti-HIV antibody 4e10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 2005, 22, 163–173, doi:10.1016/j.immuni.2004.12.011.
[28]  Saphire, E.O.; Parren, P.W.; Pantophlet, R.; Zwick, M.B.; Morris, G.M.; Rudd, P.M.; Dwek, R.A.; Stanfield, R.L.; Burton, D.R.; Wilson, I.A. Crystal structure of a neutralizing human igg against HIV-1: A template for vaccine design. Science 2001, 293, 1155–1159, doi:10.1126/science.1061692.
[29]  Pancera, M.; McLellan, J.S.; Wu, X.; Zhu, J.; Changela, A.; Schmidt, S.D.; Yang, Y.; Zhou, T.; Phogat, S.; Mascola, J.R.; et al. Crystal structure of pg16 and chimeric dissection with somatically related pg9: Structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J. Virol. 2010, 84, 8098–8110.
[30]  Pejchal, R.; Walker, L.M.; Stanfield, R.L.; Phogat, S.K.; Koff, W.C.; Poignard, P.; Burton, D.R.; Wilson, I.A. Structure and function of broadly reactive antibody pg16 reveal an h3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl. Acad. Sci. USA 2010, 107, 11483–11488, doi:10.1073/pnas.1004600107.
[31]  Dewan, M.Z.; Terashima, K.; Ahmed, S.; Ohba, K.; Taruishi, M.; Yamamoto, N. Mouse serum factor(s) down-modulate the cd4 and cxcr4 molecules on human T cells conferring resistance to HIV infection in nog mice. Med. Microbiol. Immunol. 2005, 194, 175–180, doi:10.1007/s00430-004-0234-1.
[32]  Moog, C.; Fleury, H.J.; Pellegrin, I.; Kirn, A.; Aubertin, A.M. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1—Infected individuals. J. Virol. 1997, 71, 3734–3741.
[33]  Vinner, L.; Therrien, D.; Wee, E.; Laursen, I.; Hanke, T.; Corbet, S.L.; Fomsgaard, A. Immune response in rhesus macaques after mixed modality immunisations with DNA, recombinant adenovirus and recombinant gp120 from human immunodeficiency virus type 1. Acta Pathol. Microbiol. Immunol. Scand. 2006, 114, 690–699.
[34]  Vinner, L.; Wee, E.G.; Patel, S.; Corbet, S.; Gao, G.P.; Nielsen, C.; Wilson, J.M.; Ertl, H.C.; Hanke, T.; Fomsgaard, A. Immunogenicity in Mamu-A*01 rhesus macaques of a CCR5-tropic human immunodeficiency virus type 1 envelope from the primary isolate (Bx08) after synthetic DNA prime and recombinant adenovirus 5 boost. J. Gen. Virol. 2003, 84, 203–213, doi:10.1099/vir.0.18589-0.
[35]  Haas, J.; Park, E.C.; Seed, B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 1996, 6, 315–324, doi:10.1016/S0960-9822(02)00482-7.
[36]  Sanders, R.W.; Schiffner, L.; Master, A.; Kajumo, F.; Guo, Y.; Dragic, T.; Moore, J.P.; Binley, J.M. Variable-loop-deleted variants of the human immunodeficiency virus type 1 envelope glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits. J. Virol. 2000, 74, 5091–5100.
[37]  Harbury, P.B.; Zhang, T.; Kim, P.S.; Alber, T. A switch between two-, three-, and four-stranded coiled coils in gcn4 leucine zipper mutants. Science 1993, 262, 1401–1407.
[38]  Harbury, P.B.; Kim, P.S.; Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 1994, 371, 80–83, doi:10.1038/371080a0.
[39]  Melchers, M.; Bontjer, I.; Tong, T.; Chung, N.P.; Klasse, P.J.; Eggink, D.; Montefiori, D.C.; Gentile, M.; Cerutti, A.; Olson, W.C.; et al. Targeting HIV-1 envelope glycoprotein trimers to B cells by using april improves antibody responses. J. Virol. 2012, 86, 2488–2500.
[40]  Melchers, M.; Matthews, K.; de Vries, R.P.; Eggink, D.; van Montfort, T.; Bontjer, I.; van de Sandt, C.; David, K.; Berkhout, B.; Moore, J.P.; et al. A stabilized HIV-1 envelope glycoprotein trimer fused to CD40 ligand targets and activates dendritic cells. Retrovirology 2011, 8, 48, doi:10.1186/1742-4690-8-48.
[41]  Gomez Roman, V.R.; Vinner, L.; Grevstad, B.; Hansen, J.J.; Wegmann, F.; Spetz, A.L.; Fomsgaard, A. Development of standard operating procedures to obtain longitudinal vaginal specimens from nulliparous rabbits as part of HIV vaccine mucosal immunogenicity studies. J. Immunol. Method. 2010, 363, 29–41, doi:10.1016/j.jim.2010.09.030.
[42]  Heyndrickx, L.; Heath, A.; Sheik-Khalil, E.; Alcami, J.; Bongertz, V.; Jansson, M.; Malnati, M.; Montefiori, D.; Moog, C.; Morris, L.; et al. International network for comparison of HIV neutralization assays: The neutnet report II. PLoS One 2012, 7, e36438, doi:10.1371/journal.pone.0036438.
[43]  Montefiori, D.C. Measuring HIV neutralization in a luciferase reporter gene assay. Meth. Mol. Biol. 2009, 485, 395–405, doi:10.1007/978-1-59745-170-3_26.
[44]  Fenyo, E.M.; Heath, A.; Dispinseri, S.; Holmes, H.; Lusso, P.; Zolla-Pazner, S.; Donners, H.; Heyndrickx, L.; Alcami, J.; Bongertz, V.; et al. International network for comparison of HIV neutralization assays: The neutnet report. PLoS One 2009, 4, e4505, doi:10.1371/journal.pone.0004505.
[45]  Nielsen, C.M.; Bygbjerg, I.C.; Vestergaard, B.F. Detection of HIV antigens in eluates from whole blood collected on filterpaper. Lancet 1987, 1, 566–567.
[46]  Corbet, S.; Nielsen, H.V.; Vinner, L.; Lauemoller, S.; Therrien, D.; Tang, S.; Kronborg, G.; Mathiesen, L.; Chaplin, P.; Brunak, S.; et al. Optimization and immune recognition of multiple novel conserved hla-a2, human immunodeficiency virus type 1-specific ctl epitopes. J. Gen. Virol. 2003, 84, 2409–2421, doi:10.1099/vir.0.19152-0.
[47]  Fomsgaard, A.; Vinner, L.; Therrien, D.; Jorgensen, L.B.; Nielsen, C.; Mathiesen, L.; Pedersen, C.; Corbet, S. Full-length characterization of a1/d intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner. AIDS Res. Hum. Retroviruses 2008, 24, 463–472, doi:10.1089/aid.2006.0294.
[48]  Wang, S.; Pal, R.; Mascola, J.R.; Chou, T.H.; Mboudjeka, I.; Shen, S.; Liu, Q.; Whitney, S.; Keen, T.; Nair, B.C.; et al. Polyvalent HIV-1 env vaccine formulations delivered by the DNA priming plus protein boosting approach are effective in generating neutralizing antibodies against primary human immunodeficiency virus type 1 isolates from subtypes A, B, C, D and E. Virology 2006, 350, 34–47, doi:10.1016/j.virol.2006.02.032.
[49]  Catanzaro, A.T.; Roederer, M.; Koup, R.A.; Bailer, R.T.; Enama, M.E.; Nason, M.C.; Martin, J.E.; Rucker, S.; Andrews, C.A.; Gomez, P.L.; et al. Phase 1 clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine 2007, 25, 4085–4092, doi:10.1016/j.vaccine.2007.02.050.
[50]  Rollman, E.; Brave, A.; Boberg, A.; Gudmundsdotter, L.; Engstrom, G.; Isaguliants, M.; Ljungberg, K.; Lundgren, B.; Blomberg, P.; Hinkula, J.; et al. The rationale behind a vaccine based on multiple HIV antigens. Microbes Infect. 2005, 7, 1414–1423.
[51]  Eller, M.A.; Eller, L.A.; Opollo, M.S.; Ouma, B.J.; Oballah, P.O.; Galley, L.; Karnasuta, C.; Kim, S.R.; Robb, M.L.; Michael, N.L.; et al. Induction of HIV-specific functional immune responses by a multiclade HIV-1 DNA vaccine candidate in healthy ugandans. Vaccine 2007, 25, 7737–7742, doi:10.1016/j.vaccine.2007.08.056.
[52]  Jelley-Gibbs, D.M.; Swain, S.L. T cell memory generation in the face of persistent antigen presentation. Curr. Immunol. Rev. 2007, 3, 240–250, doi:10.2174/157339507783334183.
[53]  Farrell, H.M., Jr.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2004, 87, 1641–1674, doi:10.3168/jds.S0022-0302(04)73319-6.
[54]  Jeffs, S.A.; Goriup, S.; Kebble, B.; Crane, D.; Bolgiano, B.; Sattentau, Q.; Jones, S.; Holmes, H. Expression and characterisation of recombinant oligomeric envelope glycoproteins derived from primary isolates of HIV-1. Vaccine 2004, 22, 1032–1046, doi:10.1016/j.vaccine.2003.08.042.
[55]  Muster, T.; Steindl, F.; Purtscher, M.; Trkola, A.; Klima, A.; Himmler, G.; Ruker, F.; Katinger, H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 1993, 67, 6642–6647.
[56]  Stiegler, G.; Kunert, R.; Purtscher, M.; Wolbank, S.; Voglauer, R.; Steindl, F.; Katinger, H. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 2001, 17, 1757–1765, doi:10.1089/08892220152741450.
[57]  Zwick, M.B.; Jensen, R.; Church, S.; Wang, M.; Stiegler, G.; Kunert, R.; Katinger, H.; Burton, D.R. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2f5 and 4e10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J. Virol. 2005, 79, 1252–1261.
[58]  Cho, M.W.; Kim, Y.B.; Lee, M.K.; Gupta, K.C.; Ross, W.; Plishka, R.; Buckler-White, A.; Igarashi, T.; Theodore, T.; Byrum, R.; et al. Polyvalent envelope glycoprotein vaccine elicits a broader neutralizing antibody response but is unable to provide sterilizing protection against heterologous simian/human immunodeficiency virus infection in pigtailed macaques. J. Virol. 2001, 75, 2224–2234, doi:10.1128/JVI.75.5.2224-2234.2001.
[59]  Seaman, M.S.; Leblanc, D.F.; Grandpre, L.E.; Bartman, M.T.; Montefiori, D.C.; Letvin, N.L.; Mascola, J.R. Standardized assessment of nab responses elicited in rhesus monkeys immunized with single- or multi-clade HIV-1 envelope immunogens. Virology 2007, 367, 175–186, doi:10.1016/j.virol.2007.05.024.
[60]  Moog, C.; Spenlehauer, C.; Fleury, H.; Heshmati, F.; Saragosti, S.; Letourneur, F.; Kirn, A.; Aubertin, A.M. Neutralization of primary human immunodeficiency virus type 1 isolates: A study of parameters implicated in neutralization in vitro. AIDS Res. Hum. Retroviruses 1997, 13, 19–27, doi:10.1089/aid.1997.13.19.
[61]  Kulkarni, V.; Jalah, R.; Ganneru, B.; Bergamaschi, C.; Alicea, C.; von Gegerfelt, A.; Patel, V.; Zhang, G.M.; Chowdhury, B.; Broderick, K.E.; et al. Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 2011, 29, 6742–6754, doi:10.1016/j.vaccine.2010.12.056.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133