|
BMC Medical Imaging 2010
Rapid T1 quantification based on 3D phase sensitive inversion recoveryAbstract: The accuracy of the method was investigated on phantoms and using simulations. The method was applied to a group of patients with suspected myocardial infarction where the absolute difference in relaxation of healthy and fibrotic myocardium was measured at about 15 minutes post-contrast. The evolution of the absolute R1 relaxation rate (1/T1) over time after contrast injection was followed for one patient and compared to T1 mapping using Look-Locker. Based on the T1 maps synthetic LGE images were reconstructed and compared to the conventional LGE images.The fitting algorithm is robust against variation in acquisition flip angle, the inversion delay time and cardiac arrhythmia. The observed relaxation rate of the myocardium is 1.2 s-1, increasing to 6 - 7 s-1 after contrast injection and decreasing to 2 - 2.5 s-1 for healthy myocardium and to 3.5 - 4 s-1 for fibrotic myocardium. Synthesized images based on the T1 maps correspond very well to actual LGE images.The method provides a robust quantification of post-Gd T1 relaxation for a complete cardiac volume within a single breath-hold.Contrast Enhanced Magnetic Resonance Imaging (CEMRI) is the preferred modality for the detection and characterization of myocardial viability [1-6]. At 10-30 minutes after the administration of a T1 contrast medium fibrotic or otherwise damaged myocardium exhibits hyper-enhancement in comparison with healthy tissue, owing to differences in wash-out kinetics of the contrast agent. Typically, a Phase Sensitive Inversion Recovery (PSIR) sequence is applied for high image contrast between healthy and fibrotic myocardium. In such an acquisition an inversion pulse is applied followed by two acquisitions, one at a short inversion delay time Tinv and a second during the same heart phase at the subsequent heart beat. The total kernel time of the acquisition spans two cardiac RR intervals. The latter acquisition is used to correct the background phase of the former such that a real image is recons
|