全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Robust Inference for Incomplete Binary Longitudinal Data

DOI: 10.3968/j.pam.1925252820120402.s0803

Full-Text   Cite this paper   Add to My Lib

Abstract:

Missing data occur in many longitudinal studies. When data are nonignorably missing, it is necessary to incorporate the missing data mechanism into the observed data likelihood function. A full likelihood analysis of nonignorable missing data is complicated algebraically, and often requires intensive computation, especially when there are many follow-up times. To avoid such computational difficulties, pseudo-likelihood methods have been proposed in the literature under minimal parametric assumptions. However, like the classical maximum likelihood estimators, these pseudo-likelihood estimators are also sensitive to potential outliers in the data. In this article, we propose and explore a robust method in the framework of a pseudo-likelihood function that is derived under the working assumption that the longitudinal responses are independent over time. The performance of the proposed robust method is investigated in simulations. The method is also illustrated in an example using actual data on CD4 counts from clinical trials of HIV-infected patients.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133