|
Progress in Physics 2010
Relativity in Combinatorial Gravitational FieldsKeywords: General Relativity , Smarandache spaces , combinatorial gravitational fields Abstract: A combinatorial spacetime $(mathscr{C}_G| uboverline{t})$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.
|