全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis

DOI: 10.1186/1471-2334-8-50

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ninety-four severe sepsis patients with hypotension were randomly assigned to three groups. The patients received the following injections within 15 min at initial treatment: Ns group (n = 32), 5 ml/kg normal saline; Hs group (n = 30), with 5 ml/kg 3.5% sodium chloride; and Sb group (n = 32), 5 ml/kg 5% sodium bicarbonate. Cardiac output (CO), systolic blood pressure, mean arterial pressure (MAP), body temperature, heart rate, respiratory rate and blood gases were measured.There were no differences among the three groups in CO, MAP, heart rate or respiratory rate during the 120 min trial or the 8 hour follow-up, and no significant differences in observed mortality rate after 28 days. However, improvement of MAP and CO started earlier in the Sb group than in the Ns and Hs groups. Sodium bicarbonate increased the base excess but did not alter blood pH, lactic acid or [HCO3]- values; and neither 3.5% hypertonic saline nor 5% sodium bicarbonate altered the Na+, K+, Ca2+ or Cl- levels.All three crystalloid solutions may be used for initial volume loading in severe sepsis, and sodium bicarbonate confers a limited benefit on humans with severe sepsis.ISRCTN36748319.Severe sepsis has been recognized as an increasingly serious clinical problem, accounting for substantial morbidity and mortality. Critical status, organ hypoperfusion, volume deficiency and hypotension characterize its early phase. Therefore, initial care of patients with severe sepsis, such as early volume fluid loading and antibiotic treatment on admission, is emphasized as an early intervention [1-3]. In previous studies, the following benefits of crystalloid fluids have been demonstrated: (1) large-volume resuscitation with isotonic crystalloids conferred the highest survival rates; (2) extracellular fluid was redistributed during shock into both the intravascular and intracellular spaces; and (3) optimal resuscitation to correct this extracellular fluid deficit required infusion of a 3:1 ratio of isotonic

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133