全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrete Energy Asymptotics on a Riemannian circle

Keywords: Discrete Energy Asymptotics , Geodesic Riesz Energy , Geodesic Logarithmic Energy , Riemannian Circle , Riemann Zeta Function , General Kernel Functions , Euler-MacLaurin Summation Formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

We derive the complete asymptotic expansion in terms of powers of $N$ for the geodesic $f$-energy of $N$ equally spaced points on a rectifiable simple closed curve $Gamma$ in $Rset^p$, $p≥2$, as $N o infty$. For $f$ decreasing and convex, such a point configuration minimizes the $f$-energy $sum_{j eq k}f(d(mathbf{x}_j, mathbf{x}_k))$, where $d$ is the geodesic distance (with respect to $Gamma$) between points on $Gamma$. Completely monotonic functions, analytic kernel functions, Laurent series, and weighted kernel functions $f$ are studied.%Of particular interest are the geodesic Riesz potential $1/d^s$ (${s eq 0}$) and the geodesic logarithmic potential $log(1/d)$. By analytic continuation we deduce the expansion for all complex values of $s$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133