全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrepancy estimate of normal vectors (the case of hyperbolic matrices)

Keywords: Hyperbolic matrix , normal vector , uniform distribution , discrepancy.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A$ be a $t \times t$ invertible matrix with integer entries and with eigenvalues $|\lambda_i| \neq 1, i \in [1, t]$. In this paper we prove explicitly that there exists a vector $\alpha$, such that discrepancy of the sequence $\{\alpha A^n\}_{n=1}^{N}$ is equal to $O(N^{-1} (\log N)^{t+5})$ for $N \longrightarrow \infty$. This estimate can be improved no more than on the logarithmic factor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133