全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Limit points of fractional parts of geometric sequences

Keywords: Fractional part , limit point , uniform distribution , algebraic number

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\alpha > 1$ be an algebraic number and $\xi$ a nonzero real number. In this paper, we compute the range of the fractional parts ${\xi \alpha^n} (n=0,1, \ldots)$. In particular, we estimate the maximal and minimal limit points. Our results show, for example, that if $\theta (=24.97 \ldots)$ is the unique zero of the polynomial $2X^2-50X+1$ with $X > 1$, then there exists a nonzero $\xi^*$ satisfying $\limsup_{n \to \infty} {\xi^*\theta^n} \leq 0.02127 \ldots$. On the other hand, we also prove for any nonzero $\xi$ that \limsup_{n\to \infty}{\xi \theta^n} \geq 0.02003 \ldots .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133