全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms

DOI: 10.1186/1471-2334-11-228

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluates the role of EPS in Prevotella intermedia for the expression of virulence. This evaluation was accomplished by comparing EPS-producing P. intermedia strains 17 and OD1-16 with non-producing P. intermedia ATCC 25611 and Porphyromonas gingivalis strains ATCC 33277, 381 and W83 for their ability to induce abscess formation in mice and evade phagocytosis.EPS-producing P. intermedia strains 17 and OD1-16 induced highly noticeable abscess lesions in mice at 107 colony-forming units (CFU). In comparison, P. intermedia ATCC 25611 and P. gingivalis ATCC 33277, 381 and W83, which all lacked the ability to produce viscous materials, required 100-fold more bacteria (109 CFU) in order to induce detectable abscess lesions in mice. Regarding antiphagocytic activity, P. intermedia strains 17 and OD1-16 were rarely internalized by human polymorphonuclear leukocytes, but other strains were readily engulfed and detected in the phagosomes of these phagocytes.These results demonstrate that the production of EPS by P. intermedia strains 17 and OD1-16 could contribute to the pathogenicity of this organism by conferring their ability to evade the host's innate defence response.Exopolysaccharide (EPS) productivities in many bacteria have been associated with pathogenicity in mammalian hosts as providing extracellular matrices to form biofilm or capsular polysaccharides attached to the cell surface [1-3]. Within biofilms, bacteria themselves are embedded in EPS and organise as a multicellular community [4]. Many gram-positive and gram-negative bacteria also produce polysaccharides that remain attached to the cell to form a capsule [5,6]. Some clinical isolates of Prevotella intermedia and Prevotella nigrescens produce mannose-rich EPSs. As revealed by electron microscopy, these clinical isolates showed dense meshwork structures around their cells [7,8], which are similar to the phenotype of other biofilm-forming bacteria such as Pseudomonas aeruginosa [9], salmonellae [10

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133