全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nucleic-Acid-Binding Chromophores as Efficient Indicators of Aptamer-Target Interactions

DOI: 10.1155/2012/247280

Full-Text   Cite this paper   Add to My Lib

Abstract:

The binding affinity and specificity of nucleic acid aptamers have made them valuable candidates for use as sensors in diagnostic applications. In particular, chromophore-functionalized aptamers offer a relatively simple format for detection and quantification of target molecules. We describe the use of nucleic-acid-staining reagents as an effective tool for detecting and signaling aptamer-target interactions. Aptamers varying in size and structure and targeting a range of molecules have been used in conjunction with commercially available chromophores to indicate and quantify the presence of cognate targets with high sensitivity and selectivity. Our assay precludes the covalent modification of nucleic acids and relies on the differential fluorescence signal of chromophores when complexed with aptamers with or without their cognate target. We also evaluate factors that are critical for the stability of the complex between the aptamer and chromophore in presence or absence of target molecules. Our results indicate the possibility of controlling those factors to enhance the sensitivity of target detection by the aptamers used in such assays. 1. Introduction Over the past two decades, the principles underlying nucleic acid structure and the polymeric characteristics of oligonucleotides have been exploited for creation of special ligand sequences that bind specific target molecules with high affinity and specificity [1, 2]. These special sequences or aptamers are discovered from combinatorial oligonucleotide libraries by iterative selection and amplification processes. The rationale for an iterative selection process is explained by the principles of systematic evolution of ligands by exponential enrichment (SELEX) [2]. SELEX has allowed the discovery of aptamers for a plethora of molecular targets including small molecules and proteins [3]. By virtue of their high affinity and specificity aptamers have emerged as a class of molecules that rival antibodies especially in diagnostic and biosensing applications [4]. In particular, aptamers address several shortcomings of antibodies such as the ability to function in nonphysiological buffers and temperatures and the ability to identify reporter molecules such as fluorescein at precise locations. In this regard, aptamer-based optical sensors are extremely attractive and have been the object of extensive research [5–8]. Molecular beacon-inspired optical assays require functionalization of the 5′- and/or 3′-termini of an aptamer with a fluorophore and a quencher. In the presence of or upon binding to the target,

References

[1]  C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990.
[2]  A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990.
[3]  S. E. Osborne and A. D. Ellington, “Nucleic acid selection and the challenge of combinatorial chemistry,” Chemical Reviews, vol. 97, no. 2, pp. 349–370, 1997.
[4]  S. D. Jayasena, “Aptamers: an emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628–1650, 1999.
[5]  R. Nutiu and Y. Li, “Structure-switching signaling aptamers,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4771–4778, 2003.
[6]  H.-A. Ho and M. Leclerc, “Optical sensors based on hybrid aptamer/conjugated polymer complexes,” Journal of the American Chemical Society, vol. 126, no. 5, pp. 1384–1387, 2004.
[7]  C. Zhou, Y. Jiang, S. Hou, B. Ma, X. Fang, and M. Li, “Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO,” Analytical and Bioanalytical Chemistry, vol. 384, no. 5, pp. 1175–1180, 2006.
[8]  C. J. Yang, S. Jockusch, M. Vicens, N. J. Turro, and W. Tan, “Light-switching excimer probes for rapid protein monitoring in complex biological fluids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17278–17283, 2005.
[9]  N. Li and C.-M. Ho, “Aptamer-based optical probes with separated molecular recognition and signal transduction modules,” Journal of the American Chemical Society, vol. 130, no. 8, pp. 2380–2381, 2008.
[10]  S. Perrier, C. Ravelet, V. Guieu et al., “Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis,” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1652–1657, 2010.
[11]  M. N. Stojanovic and D. M. Kolpashchikov, “Modular aptameric sensors,” Journal of the American Chemical Society, vol. 126, no. 30, pp. 9266–9270, 2004.
[12]  J. Liu and Y. Lu, “Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles,” Angewandte Chemie, vol. 45, no. 1, pp. 90–94, 2005.
[13]  Y. Xiang, Z. Wang, H. Xing, N. Y. Wong, and Y. Lu, “Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach,” Analytical Chemistry, vol. 82, no. 10, pp. 4122–4129, 2010.
[14]  R. Pei and M. N. Stojanovic, “Study of thiazole orange in aptamer-based dye-displacement assays,” Analytical and Bioanalytical Chemistry, vol. 390, no. 4, pp. 1093–1099, 2008.
[15]  A. N. Glazer and H. S. Rye, “Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection,” Nature, vol. 359, no. 6398, pp. 859–861, 1992.
[16]  H. Zipper, H. Brunner, J. Bernhagen, and F. Vitzthum, “Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications,” Nucleic Acids Research, vol. 32, no. 12, p. e103, 2004.
[17]  D. E. Huizenga and J. W. Szostak, “A DNA aptamer that binds adenosine and ATP,” Biochemistry, vol. 34, no. 2, pp. 656–665, 1995.
[18]  L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature, vol. 355, no. 6360, pp. 564–566, 1992.
[19]  R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3745–3749, 1993.
[20]  R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, “High-resolution molecular discrimination by RNA,” Science, vol. 263, no. 5152, pp. 1425–1429, 1994.
[21]  G. R. Zimmermann, R. D. Jenison, C. L. Wick, J. P. Simorre, and A. Pardi, “Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA,” Nature Structural Biology, vol. 4, no. 8, pp. 644–649, 1997.
[22]  A. V. Tataurov, Y. You, and R. Owczarzy, “Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids,” Biophysical Chemistry, vol. 133, no. 1–3, pp. 66–70, 2008.
[23]  M. A. A. F. C. T. De Carrondo, M. Coll, J. Aymami et al., “Binding of a hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment,” Biochemistry, vol. 28, no. 19, pp. 7849–7859, 1989.
[24]  J. Liu, Z. Cao, and Y. Lu, “Functional nucleic acid sensors,” Chemical Reviews, vol. 109, no. 5, pp. 1948–1998, 2009.
[25]  B. J. Anderson, C. Larkin, K. Guja, and J. F. Schildbach, “Using fluorophore-labeled oligonucleotides to measure affinities of protein-DNA interactions,” Methods in Enzymology, vol. 450, pp. 253–272, 2008.
[26]  Y. Jiang, X. Fang, and C. Bai, “Signaling aptamer/protein binding by a molecular light switch complex,” Analytical Chemistry, vol. 76, no. 17, pp. 5230–5235, 2004.
[27]  X. Cheng, T. Bing, X. Liu, and D. Shangguan, “A label-free fluorescence sensor for probing the interaction of oligonucleotides with target molecules,” Analytica Chimica Acta, vol. 633, no. 1, pp. 97–102, 2009.
[28]  H. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 14036–14039, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133