全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetically Encoded Libraries of Nonstandard Peptides

DOI: 10.1155/2012/713510

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of a nonproteinogenic moiety in a nonstandard peptide often improves the biological properties of the peptide. Non-standard peptide libraries are therefore used to obtain valuable molecules for biological, therapeutic, and diagnostic applications. Highly diverse non-standard peptide libraries can be generated by chemically or enzymatically modifying standard peptide libraries synthesized by the ribosomal machinery, using posttranslational modifications. Alternatively, strategies for encoding non-proteinogenic amino acids into the genetic code have been developed for the direct ribosomal synthesis of non-standard peptide libraries. In the strategies for genetic code expansion, non-proteinogenic amino acids are assigned to the nonsense codons or 4-base codons in order to add these amino acids to the universal genetic code. In contrast, in the strategies for genetic code reprogramming, some proteinogenic amino acids are erased from the genetic code and non-proteinogenic amino acids are reassigned to the blank codons. Here, we discuss the generation of genetically encoded non-standard peptide libraries using these strategies and also review recent applications of these libraries to the selection of functional non-standard peptides. 1. Introduction Nonstandard peptides, also known as unnatural peptides or peptidomimetics, are peptide-based small molecules containing a moiety that does not exist in standard (i.e., natural) peptides composed of only 20 proteinogenic amino acids. The nonproteinogenic moiety in nonstandard peptides, such as a nonproteinogenic side chain, a modified backbone, or a macrocyclized backbone, often contributes to improving the peptide’s cell permeability, stability against peptidases, and conformational rigidity, thereby affording specific high affinity toward its target molecule [1–5]. Naturally occurring nonribosomal peptides (e.g., immunosuppressant cyclosporine A) are representative of nonstandard peptides, and given the success of nonribosomal peptides as therapeutics, the development of methods to construct highly diverse drug-like nonstandard peptide libraries is important for the discovery of novel drug candidates. Chemical synthesis can generate highly modified drug-like nonstandard peptide libraries, but the size of these libraries is relatively small (with a diversity of up to 106 unique compounds). In contrast, by using genotype-phenotype linking technology, ribosomal synthesis can generate genetically encoded peptide libraries with extremely high diversity (up to 1013 compounds) [6–9]. However, ribosomally

References

[1]  S. M. Miller, R. J. Simon, S. Ng, R. N. Zuckermann, J. M. Kerr, and W. H. Moos, “Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers,” Drug Development Research, vol. 35, no. 1, pp. 20–32, 1995.
[2]  A. Frankel, S. W. Millward, and R. W. Roberts, “Encodamers: unnatural peptide oligomers encoded in RNA,” Chemistry and Biology, vol. 10, no. 11, pp. 1043–1050, 2003.
[3]  Y. Sako, Y. Goto, H. Murakami, and H. Suga, “Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond,” ACS Chemical Biology, vol. 3, no. 4, pp. 241–249, 2008.
[4]  O. Ovadia, S. Greenberg, J. Chatterjee et al., “The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides,” Molecular Pharmaceutics, vol. 8, no. 2, pp. 479–487, 2011.
[5]  Y. Yamagishi, I. Shoji, S. Miyagawa, et al., “Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library,” Chemistry & Biology, vol. 18, no. 12, pp. 1562–1570, 2011.
[6]  G. P. Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface,” Science, vol. 228, no. 4705, pp. 1315–1317, 1985.
[7]  L. C. Mattheakis, R. R. Bhatt, and W. J. Dower, “An in vitro polysome display system for identifying ligands from very large peptide libraries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 9022–9026, 1994.
[8]  N. Nemoto, E. Miyamoto-Sato, Y. Husimi, and H. Yanagawa, “In vitro virus: bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro,” FEBS Letters, vol. 414, no. 2, pp. 405–408, 1997.
[9]  R. W. Roberts and J. W. Szostak, “RNA-peptide fusions for the in vitro selection of peptides and proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12297–12302, 1997.
[10]  C. Heinis, T. Rutherford, S. Freund, and G. Winter, “Phage-encoded combinatorial chemical libraries based on bicyclic peptides,” Nature Chemical Biology, vol. 5, no. 7, pp. 502–507, 2009.
[11]  A. Angelini, L. Cendron, S. Chen, et al., “Bicyclic peptide inhibitor reveals large contact interface with a protease target,” ACS Chemical Biology, vol. 7, no. 5, pp. 817–821, 2012.
[12]  V. Baeriswyl, H. Rapley, L. Pollaro, et al., “Bicyclic peptides with optimized ring size inhibit human plasma kallikrein and its orthologues while sparing paralogous proteases,” ChemMedChem, vol. 7, no. 7, pp. 1173–1176, 2012.
[13]  T. Bosma, A. Kuipers, E. Bulten, L. de Vries, R. Rink, and G. N. Moll, “Bacterial display and screening of posttranslationally thioether-stabilized peptides,” Applied and Environmental Microbiology, vol. 77, no. 19, pp. 6794–6801, 2011.
[14]  S. Li and R. W. Roberts, “A novel strategy for in vitro selection of peptide-drug conjugates,” Chemistry and Biology, vol. 10, no. 3, pp. 233–239, 2003.
[15]  A. Angelini and C. Heinis, “Post-translational modification of genetically encoded polypeptide libraries,” Current Opinion in Chemical Biology, vol. 15, no. 3, pp. 355–361, 2011.
[16]  J. D. Bain, C. G. Glabe, T. A. Dix, A. R. Chamberlin, and E. S. Diala, “Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide,” Journal of the American Chemical Society, vol. 111, no. 20, pp. 8013–8014, 1989.
[17]  C. J. Noren, S. J. Anthony-Cahill, M. C. Griffith, and P. G. Schultz, “A general method for site-specific incorporation of unnatural amino acids into proteins,” Science, vol. 244, no. 4901, pp. 182–188, 1989.
[18]  T. G. Heckler, L. H. Chang, Y. Zama, T. Naka, M. S. Chorghade, and S. M. Hecht, “T4 RNA ligase mediated preparation of novel "chemically misacylated" tRNAPheS,” Biochemistry, vol. 23, no. 7, pp. 1468–1473, 1984.
[19]  J. D. Bain, E. S. Diala, C. G. Glabe et al., “Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs,” Biochemistry, vol. 30, no. 22, pp. 5411–5421, 1991.
[20]  T. Hohsaka, Y. Ashizuka, H. Murakami, and M. Sisido, “Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression,” Journal of the American Chemical Society, vol. 118, no. 40, pp. 9778–9779, 1996.
[21]  H. Murakami, T. Hohsaka, Y. Ashizuka, and M. Sisido, “Site-directed incorporation of p-nitrophenylalanine into streptavidin and site-to-site photinduced electron transfer from a pyrenyl group to a nitrophenyl group on the protein framework,” Journal of the American Chemical Society, vol. 120, no. 30, pp. 7520–7529, 1998.
[22]  T. Hohsaka, D. Kajihara, Y. Ashizuka, H. Murakami, and M. Sisido, “Efficient incorporation of nonnatural amino acids with large aromatic groups into streptavidin in in vitro protein synthesizing systems,” Journal of the American Chemical Society, vol. 121, no. 1, pp. 34–40, 1999.
[23]  T. Hohsaka, Y. Ashizuka, H. Taira, H. Murakami, and M. Sisido, “Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system,” Biochemistry, vol. 40, no. 37, pp. 11060–11064, 2001.
[24]  T. Hohsaka, Y. Ashizuka, H. Murakami, and M. Sisido, “Five-base codons for incorporation of nonnatural amino acids into proteins,” Nucleic Acids Research, vol. 29, no. 17, pp. 3646–3651, 2001.
[25]  T. Hohsaka, Y. Ashizuka, H. Sasaki, H. Murakami, and M. Sisido, “Incorporation of two different nonnatural amino acids independently into a single protein through extension of the genetic code,” Journal of the American Chemical Society, vol. 121, no. 51, pp. 12194–12195, 1999.
[26]  M. Taki, T. Hohsaka, H. Murakami, K. Taira, and M. Sisido, “Position-specific incorporation of a fluorophore—quencher pair into a single streptavidin through orthogonal four-base codon/anticodon pairs,” Journal of the American Chemical Society, vol. 124, no. 49, pp. 14586–14590, 2002.
[27]  T. Ohtsuki, T. Manabe, and M. Sisido, “Multiple incorporation of non-natural amino acids into a single protein using tRNAs with non-standard structures,” FEBS Letters, vol. 579, no. 30, pp. 6769–6774, 2005.
[28]  D. Kajihara, R. Abe, I. Iijima, C. Komiyama, M. Sisido, and T. Hohsaka, “FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids,” Nature Methods, vol. 3, no. 11, pp. 923–929, 2006.
[29]  M. W. Nowak, P. C. Kearney, J. R. Sampson et al., “Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells,” Science, vol. 268, no. 5209, pp. 439–442, 1995.
[30]  D. L. Beene, D. A. Dougherty, and H. A. Lester, “Unnatural amino acid mutagenesis in mapping ion channel function,” Current Opinion in Neurobiology, vol. 13, no. 3, pp. 264–270, 2003.
[31]  L. Wang, A. Brock, B. Herberich, and P. G. Schultz, “Expanding the genetic code of Escherichia coli,” Science, vol. 292, no. 5516, pp. 498–500, 2001.
[32]  C. C. Liu and P. G. Schultz, “Adding new chemistries to the genetic code,” Annual Review of Biochemistry, vol. 79, pp. 413–444, 2010.
[33]  Q. Wang, A. R. Parrish, and L. Wang, “Expanding the genetic code for biological studies,” Chemistry and Biology, vol. 16, no. 3, pp. 323–336, 2009.
[34]  L. Davis and J. W. Chin, “Designer proteins: applications of genetic code expansion in cell biology,” Nature Reviews Molecular Cell Biology, vol. 13, no. 3, pp. 168–182, 2012.
[35]  C. C. Liu and P. G. Schultz, “Recombinant expression of selectively sulfated proteins in Escherichia coli,” Nature Biotechnology, vol. 24, no. 11, pp. 1436–1440, 2006.
[36]  H. Neumann, S. Y. Peak-Chew, and J. W. Chin, “Genetically encoding Nε-acetyllysine in recombinant proteins,” Nature Chemical Biology, vol. 4, no. 4, pp. 232–234, 2008.
[37]  D. P. Nguyen, M. M. Garcia Alai, P. B. Kapadnis, H. Neumann, and J. W. Chin, “Genetically encoding Nε-methyl-L-lysine in recombinant histones,” Journal of the American Chemical Society, vol. 131, no. 40, pp. 14194–14195, 2009.
[38]  D. P. Nguyen, M. M. G. Alai, S. Virdee, and J. W. Chin, “Genetically directing ε-N, N-dimethyl-l-lysine in recombinant histones,” Chemistry and Biology, vol. 17, no. 10, pp. 1072–1076, 2010.
[39]  D. Summerer, S. Chen, N. Wu, A. Deiters, J. W. Chin, and P. G. Schultz, “A genetically encoded fluorescent amino acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9785–9789, 2006.
[40]  J. Wang, J. Xie, and P. G. Schultz, “A genetically encoded fluorescent amino acid,” Journal of the American Chemical Society, vol. 128, no. 27, pp. 8738–8739, 2006.
[41]  W. Wang, J. K. Takimoto, G. V. Louie et al., “Genetically encoding unnatural amino acids for cellular and neuronal studies,” Nature Neuroscience, vol. 10, no. 8, pp. 1063–1072, 2007.
[42]  V. K. Lacey, A. R. Parrish, S. Han, et al., “A fluorescent reporter of the phosphorylation status of the substrate protein STAT3,” Angewandte Chemie International Edition, vol. 50, no. 37, pp. 8692–8696, 2011.
[43]  H. S. Lee, J. Guo, E. A. Lemke, R. D. Dimla, and P. G. Schultz, “Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae,” Journal of the American Chemical Society, vol. 131, no. 36, pp. 12921–12923, 2009.
[44]  N. Hino, Y. Okazaki, T. Kobayashi, A. Hayashi, K. Sakamoto, and S. Yokoyama, “Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid,” Nature Methods, vol. 2, no. 3, pp. 201–206, 2005.
[45]  N. Hino, M. Oyama, A. Sato et al., “Genetic incorporation of a photo-crosslinkable amino acid reveals novel protein complexes with GRB2 in mammalian cells,” Journal of Molecular Biology, vol. 406, no. 2, pp. 343–353, 2011.
[46]  J. W. Chin, A. B. Martin, D. S. King, L. Wang, and P. G. Schultz, “Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11020–11024, 2002.
[47]  J. W. Chin, S. W. Santoro, A. B. Martin, D. S. King, L. Wang, and P. G. Schultz, “Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli,” Journal of the American Chemical Society, vol. 124, no. 31, pp. 9026–9027, 2002.
[48]  I. S. Farell, R. Toroney, J. L. Hazen, R. A. Mehl, and J. W. Chin, “Photo-cross-linking interacting proteins with a genetically encoded benzophenone,” Nature Methods, vol. 2, no. 5, pp. 377–384, 2005.
[49]  I. Coin, M. H. Perrin, W. W. Vale, and L. Wang, “Photo-cross-linkers incorporated into G-protein-coupled receptors in mammalian cells: a ligand comparison,” Angewandte Chemie International Edition, vol. 50, no. 35, pp. 8077–8081, 2011.
[50]  A. Gautier, D. P. Nguyen, H. Lusic, W. An, A. Deiters, and J. W. Chin, “Genetically encoded photocontrol of protein localization in mammalian cells,” Journal of the American Chemical Society, vol. 132, no. 12, pp. 4086–4088, 2010.
[51]  A. Gautier, A. Deiters, and J. W. Chin, “Light-activated kinases enable temporal dissection of signaling networks in living cells,” Journal of the American Chemical Society, vol. 133, no. 7, pp. 2124–2127, 2011.
[52]  E. Arbely, J. Torres-Kolbus, A. Deiters, and J. W. Chin, “Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine,” Journal of the American Chemical Society, vol. 134, no. 29, pp. 11912–11915, 2012.
[53]  N. Wu, A. Deiters, T. A. Cropp, D. King, and P. G. Schultz, “A genetically encoded photocaged amino acid,” Journal of the American Chemical Society, vol. 126, no. 44, pp. 14306–14307, 2004.
[54]  A. Deiters, D. Groff, Y. Ryu, J. Xie, and P. G. Schultz, “A genetically encoded photocaged tyrosine,” Angewandte Chemie, vol. 45, no. 17, pp. 2728–2731, 2006.
[55]  E. A. Lemke, D. Summerer, B. H. Geierstanger, S. M. Brittain, and P. G. Schultz, “Control of protein phosphorylation with a genetically encoded photocaged amino acid,” Nature Chemical Biology, vol. 3, no. 12, pp. 769–772, 2007.
[56]  Y. S. Wang, B. Wu, Z. Wang et al., “A genetically encoded photocaged Nepsilon-methyl-L-lysine,” Molecular bioSystems, vol. 6, no. 9, pp. 1557–1560, 2010.
[57]  T. Yanagisawa, R. Ishii, R. Fukunaga, T. Kobayashi, K. Sakamoto, and S. Yokoyama, “Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-Azidobenzyloxycarbonyl) lysine for site-specific protein modification,” Chemistry and Biology, vol. 15, no. 11, pp. 1187–1197, 2008.
[58]  D. P. Nguyen, H. Lusic, H. Neumann, P. B. Kapadnis, A. Deiters, and J. W. Chin, “Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA synthetase/tRNACUA pair and click chemistry,” Journal of the American Chemical Society, vol. 131, no. 25, pp. 8720–8721, 2009.
[59]  D. P. Nguyen, T. Elliott, M. Holt, T. W. Muir, and J. W. Chin, “Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation,” Journal of the American Chemical Society, vol. 133, no. 30, pp. 11418–11421, 2011.
[60]  S. Virdee, P. B. Kapadnis, T. Elliott et al., “Traceless and site-specific ubiquitination of recombinant proteins,” Journal of the American Chemical Society, vol. 133, no. 28, pp. 10708–10711, 2011.
[61]  K. Lang, L. Davis, J. Torres-Kolbus, C. Chou, A. Deiters, and J. W. Chin, “Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction,” Nature Chemistry, vol. 4, no. 4, pp. 298–304, 2012.
[62]  K. Lang, L. Davis, S. Wallace, et al., “Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic diels-alder reactions,” Journal of the American Chemical Society, vol. 134, no. 25, pp. 10317–10320, 2012.
[63]  J. L. Seitchik, J. C. Peeler, M. T. Taylor, et al., “Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes,” Journal of the American Chemical Society, vol. 134, no. 6, pp. 2898–2901, 2012.
[64]  C. K?hrer, E. L. Sullivan, and U. L. RajBhandary, “Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells,” Nucleic Acids Research, vol. 32, no. 21, pp. 6200–6211, 2004.
[65]  Z. Zhang, L. Alfonta, F. Tian et al., “Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 8882–8887, 2004.
[66]  W. Wan, Y. Huang, Z. Wang et al., “A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli,” Angewandte Chemie, vol. 49, no. 18, pp. 3211–3214, 2010.
[67]  J. C. Anderson, N. Wu, S. W. Santoro, V. Lakshman, D. S. King, and P. G. Schultz, “An expanded genetic code with a functional quadruplet codon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 20, pp. 7566–7571, 2004.
[68]  H. Neumann, K. Wang, L. Davis, M. Garcia-Alai, and J. W. Chin, “Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome,” Nature, vol. 464, no. 7287, pp. 441–444, 2010.
[69]  T. S. Young, D. D. Young, I. Ahmad, J. M. Louis, S. J. Benkovic, and P. G. Schultz, “Evolution of cyclic peptide protease inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 27, pp. 11052–11056, 2011.
[70]  C. P. Scott, E. Abel-Santos, M. Wall, D. C. Wahnon, and S. J. Benkovic, “Production of cyclic peptides and proteins in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13638–13643, 1999.
[71]  A. R. Horswill and S. J. Benkovic, “Cyclic peptides, a chemical genetics tool for biologists,” Cell Cycle, vol. 4, no. 4, pp. 552–555, 2005.
[72]  S. Li, S. Millward, and R. Roberts, “In vitro selection of mRNA display libraries containing an unnatural amino acid,” Journal of the American Chemical Society, vol. 124, no. 34, pp. 9972–9973, 2002.
[73]  A. Frankel, S. Li, S. R. Starck, and R. W. Roberts, “Unnatural RNA display libraries,” Current Opinion in Structural Biology, vol. 13, no. 4, pp. 506–512, 2003.
[74]  S. W. Millward, S. Fiacco, R. J. Austin, and R. W. Roberts, “Design of cyclic peptides that bind protein surfaces with antibody-like affinity,” ACS Chemical Biology, vol. 2, no. 9, pp. 625–634, 2007.
[75]  N. Muranaka, T. Hohsaka, and M. Sisido, “Four-base codon mediated mRNA display to construct peptide libraries that contain multiple nonnatural amino acids,” Nucleic Acids Research, vol. 34, no. 1, p. e7, 2006.
[76]  K. Wang, H. Neumann, S. Y. Peak-Chew, and J. W. Chin, “Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion,” Nature Biotechnology, vol. 25, no. 7, pp. 770–777, 2007.
[77]  Y. Huang, W. K. Russell, W. Wan, P. J. Pai, D. H. Russell, and W. Liu, “A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli,” Molecular BioSystems, vol. 6, no. 4, pp. 683–686, 2010.
[78]  T. Mukai, A. Hayashi, F. Iraha et al., “Codon reassignment in the Escherichia coli genetic code,” Nucleic Acids Research, vol. 38, no. 22, pp. 8188–8195, 2010.
[79]  T. Mukai, T. Yanagisawa, K. Ohtake, et al., “Genetic-code evolution for protein synthesis with non-natural amino acids,” Biochemical and Biophysical Research Communications, vol. 411, no. 4, pp. 757–761, 2011.
[80]  K. Ohtake, A. Sato, T. Mukai, N. Hino, S. Yokoyama, and K. Sakamoto, “Efficient decoding of the UAG triplet as a full-fledged sense codon enhances the growth of a prfA-deficient strain of Escherichia coli,” Journal of Bacteriology, vol. 194, no. 10, pp. 2606–2613, 2012.
[81]  D. B. Johnson, J. Xu, Z. Shen, et al., “RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites,” Nature Chemical Biology, vol. 7, no. 11, pp. 779–786, 2011.
[82]  D. B. Johnson, C. Wang, J. Xu, et al., “Release factor one is nonessential in Escherichia coli,” ACS Chemical Biology, vol. 7, no. 8, pp. 1337–1344, 2012.
[83]  F. J. Isaacs, P. A. Carr, H. H. Wang et al., “Precise manipulation of chromosomes in vivo enables genome-wide codon replacement,” Science, vol. 333, no. 6040, pp. 348–353, 2011.
[84]  G. F. Short III, S. Y. Golovine, and S. M. Hecht, “Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids,” Biochemistry, vol. 38, no. 27, pp. 8808–8819, 1999.
[85]  S. Sando, A. Ogawa, T. Nishi, M. Hayami, and Y. Aoyama, “In vitro selection of RNA aptamer against Escherichia coli release factor 1,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 5, pp. 1216–1220, 2007.
[86]  M. Humenik, Y. Huang, I. Safronov, and M. Sprinzl, “Simultaneous and site-directed incorporation of an ester linkage and an azide group into a polypeptide by in vitro translation,” Organic and Biomolecular Chemistry, vol. 7, no. 20, pp. 4218–4224, 2009.
[87]  S. Sando, K. Kanatani, N. Sato, H. Matsumoto, T. Hohsaka, and Y. Aoyama, “A small-molecule-based approach to sense codon-templated natural-unnatural hybrid peptides. Selective silencing and reassignment of the sense codon by orthogonal reacylation stalling at the single-codon level,” Journal of the American Chemical Society, vol. 127, no. 22, pp. 7998–7999, 2005.
[88]  A. C. Forster, Z. Tan, M. N. L. Nalam et al., “Programming peptidomimetic syntheses by translating genetic codes designed de novo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6353–6357, 2003.
[89]  B. Zhang, Z. Tan, L. G. Dickson, M. N. L. Nalam, V. W. Cornish, and A. C. Forster, “Specificity of translation for N-alkyl amino acids,” Journal of the American Chemical Society, vol. 129, no. 37, pp. 11316–11317, 2007.
[90]  A. C. Forster, “Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome,” Nucleic Acids Research, vol. 37, no. 11, pp. 3747–3755, 2009.
[91]  R. Gao and A. C. Forster, “Changeability of individual domains of an aminoacyl-tRNA in polymerization by the ribosome,” FEBS Letters, vol. 584, no. 1, pp. 99–105, 2010.
[92]  A. C. Forster, “Synthetic biology challenges long-held hypotheses in translation, codon bias and transcription,” Biotechnology Journal, vol. 7, no. 7, pp. 835–845, 2012.
[93]  K. Josephson, M. C. T. Hartman, and J. W. Szostak, “Ribosomal synthesis of unnatural peptides,” Journal of the American Chemical Society, vol. 127, no. 33, pp. 11727–11735, 2005.
[94]  H. Koide, S. Yokoyama, G. Kawai et al., “Biosynthesis of a protein containing a nonprotein amino acid by Escherichia coli: L-2-aminohexanoic acid at position 21 in human epidermal growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 17, pp. 6237–6241, 1988.
[95]  N. Budisa, “Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire,” Angewandte Chemie, vol. 43, no. 47, pp. 6426–6463, 2004.
[96]  T. L. Hendrickson, V. De Crécy-Lagard, and P. Schimmel, “Incorporation of nonnatural amino acids into proteins,” Annual Review of Biochemistry, vol. 73, pp. 147–176, 2004.
[97]  J. A. Johnson, Y. Y. Lu, J. A. Van Deventer, and D. A. Tirrell, “Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications,” Current Opinion in Chemical Biology, vol. 14, no. 6, pp. 774–780, 2010.
[98]  Y. Shimizu, A. Inoue, Y. Tomari et al., “Cell-free translation reconstituted with purified components,” Nature Biotechnology, vol. 19, no. 8, pp. 751–755, 2001.
[99]  M. C. T. Hartman, K. Josephson, and J. W. Szostak, “Enzymatic aminoacylation of tRNA with unnatural amino acids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 12, pp. 4356–4361, 2006.
[100]  M. C. Hartman, K. Josephson, C. W. Lin, and J. W. Szostak, “An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides,” PLoS ONE, vol. 2, no. 10, p. e972, 2007.
[101]  H. Murakami, A. Ohta, H. Ashigai, and H. Suga, “A highly flexible tRNA acylation method for non-natural polypeptide synthesis,” Nature Methods, vol. 3, no. 5, pp. 357–359, 2006.
[102]  H. Saito, D. Kourouklis, and H. Suga, “An in vitro evolved precursor tRNA with aminoacylation activity,” EMBO Journal, vol. 20, no. 7, pp. 1797–1806, 2001.
[103]  H. Murakami, H. Saito, and H. Suga, “A versatile tRNA aminoacylation catalyst based on RNA,” Chemistry and Biology, vol. 10, no. 7, pp. 655–662, 2003.
[104]  H. Xiao, H. Murakami, H. Suga, and A. R. Ferré-D'Amaré, “Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme,” Nature, vol. 454, no. 7202, pp. 358–361, 2008.
[105]  M. Ohuchi, H. Murakami, and H. Suga, “The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus,” Current Opinion in Chemical Biology, vol. 11, no. 5, pp. 537–542, 2007.
[106]  J. Morimoto, Y. Hayashi, K. Iwasaki, and H. Suga, “Flexizymes: their evolutionary history and the origin of catalytic function,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1359–1368, 2011.
[107]  T. J. Kang, S. Yuzawa, and H. Suga, “Expression of histone H3 tails with combinatorial lysine modifications under the reprogrammed genetic code for the investigation on epigenetic markers,” Chemistry and Biology, vol. 15, no. 11, pp. 1166–1174, 2008.
[108]  Y. Sako, J. Morimoto, H. Murakami, and H. Suga, “Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions,” Journal of the American Chemical Society, vol. 130, no. 23, pp. 7232–7234, 2008.
[109]  E. Nakajima, Y. Goto, Y. Sako, H. Murakami, and H. Suga, “Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides,” ChemBioChem, vol. 10, no. 7, pp. 1186–1192, 2009.
[110]  Y. Yamagshi, H. Ahigai, Y. Goto, H. Murakami, and H. Suga, “Ribosomal synthesis of cyclic peptides with a fluorogenic oxidative coupling reaction,” ChemBioChem, vol. 10, no. 9, pp. 1469–1472, 2009.
[111]  Y. Goto, K. Iwasaki, K. Torikai, H. Murakami, and H. Suga, “Ribosomal synthesis of dehydrobutyrine- and methyllanthionine-containing peptides,” Chemical Communications, no. 23, pp. 3419–3421, 2009.
[112]  T. Kawakami, H. Murakami, and H. Suga, “Messenger RNA-programmed incorporation of multiple N-Methyl-Amino acids into linear and cyclic peptides,” Chemistry and Biology, vol. 15, no. 1, pp. 32–42, 2008.
[113]  T. Kawakami, H. Murakami, and H. Suga, “Ribosomal synthesis of polypeptoids and peptoid-peptide hybrids,” Journal of the American Chemical Society, vol. 130, no. 50, pp. 16861–16863, 2008.
[114]  T. Kawakami, A. Ohta, M. Ohuchi, H. Ashigai, H. Murakami, and H. Suga, “Diverse backbone-cyclized peptides via codon reprogramming,” Nature Chemical Biology, vol. 5, no. 12, pp. 888–890, 2009.
[115]  Y. Goto, A. Ohta, Y. Sako, Y. Yamagishi, H. Murakami, and H. Suga, “Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides,” ACS Chemical Biology, vol. 3, no. 2, pp. 120–129, 2008.
[116]  Y. Goto, H. Murakami, and H. Suga, “Initiating translation with D-amino acids,” RNA, vol. 14, no. 7, pp. 1390–1398, 2008.
[117]  Y. Goto and H. Suga, “Translation initiation with initiator tRNA charged with exotic peptides,” Journal of the American Chemical Society, vol. 131, no. 14, pp. 5040–5041, 2009.
[118]  Y. Ohshiro, E. Nakajima, Y. Goto et al., “Ribosomal synthesis of backbone-macrocyclic peptides containing γ-amino acids,” ChemBioChem, vol. 12, no. 8, pp. 1183–1187, 2011.
[119]  A. Ohta, H. Murakami, E. Higashimura, and H. Suga, “Synthesis of polyester by means of genetic code reprogramming,” Chemistry and Biology, vol. 14, no. 12, pp. 1315–1322, 2007.
[120]  A. Ohta, H. Murakami, and H. Suga, “Polymerization of alpha-hydroxy acids by ribosomes,” Chembiochem, vol. 9, no. 17, pp. 2773–2778, 2008.
[121]  P. R. Effraim, J. Wang, M. T. Englander et al., “Natural amino acids do not require their native tRNAs for efficient selection by the ribosome,” Nature Chemical Biology, vol. 5, no. 12, pp. 947–953, 2009.
[122]  A. C. Forster, V. W. Cornish, and S. C. Blacklow, “Pure translation display,” Analytical Biochemistry, vol. 333, no. 2, pp. 358–364, 2004.
[123]  C. J. Hipolito and H. Suga, “Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems,” Current Opinion in Chemical Biology, vol. 16, no. 1-2, pp. 196–203, 2012.
[124]  A. Ohta, Y. Yamagishi, and H. Suga, “Synthesis of biopolymers using genetic code reprogramming,” Current Opinion in Chemical Biology, vol. 12, no. 2, pp. 159–167, 2008.
[125]  K. Iwasaki, Y. Goto, T. Katoh, and H. Suga, “Selective thioether macrocyclization of peptides having the N-terminal 2-chloroacetyl group and competing two or three cysteine residues in translation,” Organic & Biomolecular Chemistry, vol. 10, no. 30, pp. 5783–5786, 2012.
[126]  Y. Hayashi, J. Morimoto, and H. Suga, “In vitro selection of Anti-Akt2 thioether-macrocyclic peptides leading to isoform-selective inhibitors,” ACS Chemical Biology, vol. 7, no. 3, pp. 607–613, 2012.
[127]  J. Morimoto, Y. Hayashi, and H. Suga, “Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2,” Angewandte Chemie, vol. 51, no. 14, pp. 3423–3427, 2012.
[128]  Y. V. Guillen Schlippe, M. C. Hartman, K. Josephson, and J. W. Szostak, “In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors,” Journal of the American Chemical Society, vol. 134, no. 25, pp. 10469–10477, 2012.
[129]  F. T. Hofmann, J. W. Szostak, and F. P. Seebeck, “In vitro selection of functional lantipeptides,” Journal of the American Chemical Society, vol. 134, no. 19, pp. 8038–8041, 2012.
[130]  F. P. Seebeck and J. W. Szostak, “Ribosomal synthesis of dehydroalanine-containing peptides,” Journal of the American Chemical Society, vol. 128, no. 22, pp. 7150–7151, 2006.
[131]  F. P. Seebeck, A. Ricardo, and J. W. Szostak, “Artificial lantipeptides from in vitro translations,” Chemical Communications, vol. 47, no. 21, pp. 6141–6143, 2011.
[132]  V. W. Cornish, D. Mendel, and P. G. Schultz, “Probing protein structure and function with an expanded genetic code,” Angewandte Chemie, vol. 34, no. 6, pp. 621–633, 1995.
[133]  Z. Tan, A. C. Forster, S. C. Blacklow, and V. W. Cornish, “Amino acid backbone specificity of the Escherichia coli translation machinery,” Journal of the American Chemical Society, vol. 126, no. 40, pp. 12752–12753, 2004.
[134]  L. M. Dedkova, N. E. Fahmi, S. Y. Golovine, and S. M. Hecht, “Enhanced D-amino acid incorporation into protein by modified ribosomes,” Journal of the American Chemical Society, vol. 125, no. 22, pp. 6616–6617, 2003.
[135]  L. M. Dedkova, N. E. Fahmi, S. Y. Golovine, and S. M. Hecht, “Construction of modified ribosomes for incorporation of D-amino acids into proteins,” Biochemistry, vol. 45, no. 51, pp. 15541–15551, 2006.
[136]  L. M. Dedkova, N. E. Fahmi, R. Paul, et al., “beta-Puromycin selection of modified ribosomes for in vitro incorporation of beta-amino acids,” Biochemistry, vol. 51, no. 1, pp. 401–415, 2012.
[137]  Y. Doi, T. Ohtsuki, Y. Shimizu, T. Ueda, and M. Sisido, “Elongation factor Tu mutants expand amino acid tolerance of protein biosynthesis system,” Journal of the American Chemical Society, vol. 129, no. 46, pp. 14458–14462, 2007.
[138]  H. S. Park, M. J. Hohn, T. Umehara, et al., “Expanding the genetic code of Escherichia coli with phosphoserine,” Science, vol. 333, no. 6046, pp. 1151–1154, 2011.
[139]  T. J. Magliery, J. C. Anderson, and P. G. Schultz, “Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli,” Journal of Molecular Biology, vol. 307, no. 3, pp. 755–769, 2001.
[140]  H. Taira, T. Hohsaka, and M. Sisido, “In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system,” Nucleic Acids Research, vol. 34, no. 5, article e44, 2006.
[141]  J. Guo, C. E. Melan?on, H. S. Lee, D. Groff, and P. G. Schultz, “Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids,” Angewandte Chemie, vol. 48, no. 48, pp. 9148–9151, 2009.
[142]  A. O. Subtelny, M. C. T. Hartman, and J. W. Szostak, “Ribosomal synthesis of N-methyl peptides,” Journal of the American Chemical Society, vol. 130, no. 19, pp. 6131–6136, 2008.
[143]  A. O. Subtelny, M. C. T. Hartman, and J. W. Szostak, “Optimal codon choice can improve the efficiency and fidelity of N-methyl amino acid incorporation into peptides by in-vitro translation,” Angewandte Chemie, vol. 50, no. 14, pp. 3164–3167, 2011.
[144]  R. Odegrip, D. Coomber, B. Eldridge et al., “CIS display: in vitro selection of peptides from libraries of protein-DNA complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2806–2810, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133