Using SELEX (systematic evolution of ligands by exponential enrichment), we serendipitously discovered a ssDNA aptamer that binds selectively to the anti-FLAG M2 antibody. The aptamer consisted of two motifs (CCTTA and TGTCTWCC) separated by 2-3 bases, and the elimination of one or the other motif abrogated binding. The DNA aptamer and FLAG peptide competed for binding to the antigen-binding pocket of the M2 antibody. In addition, the aptamer eluted FLAG-tagged proteins from the antibody, suggesting a commercial application in protein purification. These findings demonstrate the feasibility of using SELEX to develop ssDNA aptamers that block the function of a specific antibody, a capability that could lead to the development of novel therapeutic modalities for patients with systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases. 1. Introduction Antinuclear antibodies are diagnostic markers of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases [1]. In these B lymphocyte disorders, a large variety of autoantibodies are made against nuclear self-antigens, including ribonucleoproteins, nucleosomes, chromatin, and polynucleotides (RNA, ssDNA, and dsDNA). Among these, anti-DNA antibodies have been the most extensively studied [2]. Anti-DNA antibodies bind with high-affinity to either single- or double-stranded DNA and many tend to favor association with pyrimidine bases [3, 4]. Several reports have also described antinuclear antibodies cross-reacting with peptide self-antigens and depositing in the brain, kidneys, and skin [5–9]. As proposed by several investigators, this deposition may be a cause of inflammation-mediated tissue damage, especially in the kidneys where nephritis is a major source of morbidity [1, 2]. In mouse models of systemic lupus erythematosus, attempts were made to block the function of these cross-reacting antibodies using peptide aptamers, derived either from their cognate peptide self-antigens or from phage display libraries [10, 11]. In some cases, the peptide aptamer competitively associated with the antinuclear autoantibodies, thereby preventing antibody-mediated tissue damage [10, 11]. Thus, direct antibody inhibition might be an effective therapy in patients with autoimmune diseases driven by the presence of antinuclear antibodies. Another viable approach to block antinuclear antibodies might be to use DNA aptamers, given the high-affinity of these antibodies for DNA and evidence of nucleotide base specificity. But this approach has clearly been underexplored, perhaps due
References
[1]
R. Lyons, S. Narain, C. Nichols, M. Satoh, and W. H. Reeves, “Effective use of autoantibody tests in the diagnosis of systemic autoimmune disease,” Annals of the New York Academy of Sciences, vol. 1050, pp. 217–228, 2005.
[2]
Y. J. Jang and B. D. Stollar, “Anti-DNA antibodies: aspects of structure and pathogenicity,” Cellular and Molecular Life Sciences, vol. 60, no. 2, pp. 309–320, 2003.
[3]
D. S. Pisetsky and S. A. Caster, “Binding specificity of a monoclonal anti-DNA antibody,” Molecular Immunology, vol. 19, no. 5, pp. 645–650, 1982.
[4]
T. Sasaki, T. Muryoi, Y. Sekiguchi, E. Tamate, K. Yoshinaga, and Y. Kitagawa, “Monoclonal human anti-DNA antibodies from EB virus-transformed lymphocytes of systemic lupus erythematosus (SLE) patients,” Journal of Clinical Immunology, vol. 5, no. 4, pp. 246–253, 1985.
[5]
L. A. DeGiorgio, K. N. Konstantinov, S. C. Lee, J. A. Hardin, B. T. Volpe, and B. Diamond, “A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus,” Nature Medicine, vol. 7, no. 11, pp. 1189–1193, 2001.
[6]
B. Deocharan, X. Qing, E. Beger, and C. Putterman, “Antigenic triggers and molecular targets for anti-double-stranded DNA antibodies,” Lupus, vol. 11, no. 12, pp. 865–871, 2002.
[7]
T. W. Faust, E. H. Chang, C. Kowal et al., “Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18569–18574, 2010.
[8]
J. B. Lefkowith, M. Kiehl, J. Rubenstein et al., “Heterogeneity and clinical significance of glomerular-binding antibodies in systemic lupus erythematosus,” Journal of Clinical Investigation, vol. 98, no. 6, pp. 1373–1380, 1996.
[9]
J. S. Rice, C. Kowal, B. T. Volpe, L. A. DeGiorgio, and B. Diamond, “Molecular mimicry: anti-DNA antibodies bind microbial and nonnucleic acid self-antigens,” Current Topics in Microbiology and Immunology, vol. 296, pp. 137–151, 2005.
[10]
B. Gaynor, C. Putterman, P. Valadon, L. Spatz, M. D. Scharff, and B. Diamond, “Peptide inhibition of glomerular deposition of an anti-DNA antibody,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1955–1960, 1997.
[11]
H. B. Lee, B. A. Diamond, and M. D. Blaufox, “In vivo detection of deposition of radiolabeled lupus antikidney antibody and its inhibition by soluble antigen,” Journal of Nuclear Medicine, vol. 42, no. 1, pp. 138–140, 2001.
[12]
M. M. Ouellette and W. E. Wright, “Use of reiterative selection for defining protein-nucleic acid interactions,” Current Opinion in Biotechnology, vol. 6, no. 1, pp. 65–72, 1995.
[13]
B. Zimmermann, I. Bilusic, C. Lorenz, and R. Schroeder, “Genomic SELEX: a discovery tool for genomic aptamers,” Methods, vol. 52, no. 2, pp. 125–132, 2010.
[14]
D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” Journal of Molecular Biology, vol. 272, no. 5, pp. 688–698, 1997.
[15]
R. C. Becker, S. Oney, K. C. Becker, and B. Sullenger, “Antidote-controlled antithrombotic therapy targeting factor IXa and von willebrand factor,” Annals of the New York Academy of Sciences, vol. 1175, pp. 61–70, 2009.
[16]
C. P. Rusconi, E. Scardino, J. Layzer et al., “RNA aptamers as reversible antagonists of coagulation factor IXa,” Nature, vol. 419, no. 6902, pp. 90–94, 2002.
[17]
B. van Steensel, A. Smogorzewska, and T. de Lange, “TRF2 protects human telomeres from end-to-end fusions,” Cell, vol. 92, no. 3, pp. 401–413, 1998.
[18]
C. M. Price, K. A. Boltz, M. F. Chaiken, J. A. Stewart, M. A. Beilstein, and D. E. Shippen, “Evolution of CST function in telomere maintenance,” Cell Cycle, vol. 9, no. 16, pp. 3157–3165, 2010.
[19]
Y. Miyake, M. Nakamura, A. Nabetani et al., “RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway,” Molecular Cell, vol. 36, no. 2, pp. 193–206, 2009.
[20]
A. Prakash, A. Natarajan, L. A. Marky, M. M. Ouellette, and G. E. Borgstahl, “Identification of the DNA-binding domains of human replication protein A that recognize G-quadruplex DNA,” Journal of Nucleic Acids, vol. 2011, Article ID 896947, 14 pages, 2011.
[21]
S. D. Mendonsa and M. T. Bowser, “In vitro evolution of functional DNA using capillary electrophoresis,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 20–21, 2004.
[22]
T. P. Roosild, S. Castronovo, and S. Choe, “Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins,” Acta Crystallographica Section F, vol. 62, no. 9, pp. 835–839, 2006.
[23]
G. F. Joyce, “Directed evolution of nucleic acid enzymes,” Annual Review of Biochemistry, vol. 73, pp. 791–836, 2004.
[24]
A. Einhauer and A. Jungbauer, “The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins,” Journal of Biochemical and Biophysical Methods, vol. 49, pp. 455–465, 2001.