全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

VEGF Spliced Variants: Possible Role of Anti-Angiogenesis Therapy

DOI: 10.1155/2012/162692

Full-Text   Cite this paper   Add to My Lib

Abstract:

Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney). Among these tumour types, clear cell renal cell carcinomas (RCCs) are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF). Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich) proteins implicated in VEGF splicing. 1. Introduction Therapies targeting angiogenesis seek to either decrease VEGF levels or to block its receptors resulting in the inhibition of downstream signalling pathways such as RAS/RAF/MEK/ERK and PI3 Kinase. Thus, molecules used in the clinic block VEGF or inhibit the tyrosine kinase activity of the VEGF receptors. These classical strategies evidently target endothelial cells and thus prevent angiogenesis but may also inhibit autocrine proliferative/survival pathways due to abnormal expression of VEGF receptors by tumour cells of different origins [1–9]. The main treatment commonly used is Bevacizumab (BVZ), a humanized IgG1 monoclonal antibody against VEGF [10]. A phase II clinical trial has shown that BVZ can significantly prolong the time to progression of disease in patients with metastatic renal-cell cancer [11]. However, only the BVZ plus interferon alpha (IFN) treatment has obtained approval by the Food and Drugs administration (FDA) in the United States of America and the European Medicines Agency (EMA) in Europe following phase III clinical assays [12, 13]. These clinical assays have demonstrated an increase in progression-free survival associated with the treatment combining IFN and BVZ compared to IFN alone. Unfortunately, BVZ plus IFN did not improve overall survival when compared to IFN monotherapy [14, 15]. Other treatments targeting the different VEGF receptors are Receptor Tyrosine Kinase Inhibitors (RTKI) such as sunitinib targeting VEGFR2, PDGFR, FLT3, and c-Kit or

References

[1]  C. Ortholan, J. Durivault, J. M. Hannoun-Levi et al., “Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment,” European Journal of Cancer, vol. 46, no. 16, pp. 3022–3036, 2010.
[2]  S. Lee, T. T. Chen, C. L. Barber et al., “Autocrine VEGF signaling is required for vascular homeostasis,” Cell, vol. 130, no. 4, pp. 691–703, 2007.
[3]  T. H. Lee, S. Seng, M. Sekine et al., “Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1,” PLoS Medicine, vol. 4, e186, no. 6, pp. 1101–1116, 2007.
[4]  S. E. Duff, M. Jeziorska, D. D. Rosa et al., “Vascular endothelial growth factors and receptors in colorectal cancer: implications for anti-angiogenic therapy,” European Journal of Cancer, vol. 42, no. 1, pp. 112–117, 2006.
[5]  G. Giannelli, A. Azzariti, C. Sgarra, L. Porcelli, S. Antonaci, and A. Paradiso, “ZD6474 inhibits proliferation and invasion of human hepatocellular carcinoma cells,” Biochemical Pharmacology, vol. 71, no. 4, pp. 479–485, 2006.
[6]  A. D. Yang, E. R. Camp, F. Fan et al., “Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells,” Cancer Research, vol. 66, no. 1, pp. 46–51, 2006.
[7]  A. Hiramatsu, H. Miwa, M. Shikami et al., “Disease-specific expression of VEGF and its receptors in AML cells: possible autocrine pathway of VEGF/type1 receptor of VEGF in t(15;17) AML and VEGF/type2 receptor of VEGF in t(8;21) AML,” Leukemia and Lymphoma, vol. 47, no. 1, pp. 89–95, 2006.
[8]  T. Seto, M. Higashiyama, H. Funai et al., “Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer,” Lung Cancer, vol. 53, no. 1, pp. 91–96, 2006.
[9]  P. M. Lacal, F. Ruffini, E. Pagani, and S. D'Atri, “An autocrine loop directed by the vascular endothelial growth factor promotes invasiveness of human melanoma cells,” International Journal of Oncology, vol. 27, no. 6, pp. 1625–1632, 2005.
[10]  L. G. Presta, H. Chen, S. J. O'Connor et al., “Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders,” Cancer Research, vol. 57, no. 20, pp. 4593–4599, 1997.
[11]  J. C. Yang, L. Haworth, R. M. Sherry et al., “A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer,” New England Journal of Medicine, vol. 349, no. 5, pp. 427–434, 2003.
[12]  B. Escudier, A. Pluzanska, P. Koralewski et al., “Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial,” Lancet, vol. 370, no. 9605, pp. 2103–2111, 2007.
[13]  B. I. Rini, S. Halabi, J. E. Rosenberg et al., “Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206,” Journal of Clinical Oncology, vol. 26, no. 33, pp. 5422–5428, 2008.
[14]  B. Escudier, J. Bellmunt, S. Négrier et al., “Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival,” Journal of Clinical Oncology, vol. 28, no. 13, pp. 2144–2150, 2010.
[15]  B. I. Rini, S. Halabi, J. E. Rosenberg et al., “Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206,” Journal of Clinical Oncology, vol. 28, no. 13, pp. 2137–2143, 2010.
[16]  R. J. Motzer, G. R. Hudes, B. D. Curti et al., “Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3958–3964, 2007.
[17]  B. Escudier, T. Eisen, W. M. Stadler et al., “Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial,” Journal of Clinical Oncology, vol. 27, no. 20, pp. 3312–3318, 2009.
[18]  B. I. Rini, G. Wilding, G. Hudes et al., “Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma,” Journal of Clinical Oncology, vol. 27, no. 27, pp. 4462–4468, 2009.
[19]  C. N. Sternberg, I. D. Davis, J. Mardiak et al., “Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1061–1068, 2010.
[20]  M. J. MacKenzie, B. I. Rini, P. Elson et al., “Temsirolimus in VEGF-refractory metastatic renal cell carcinoma,” Annals of Oncology, vol. 22, no. 1, pp. 145–148, 2011.
[21]  J. Bellmunt, C. Szczylik, J. Feingold, A. Strahs, and A. Berkenblit, “Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features,” Annals of Oncology, vol. 19, no. 8, pp. 1387–1392, 2008.
[22]  R. J. Motzer, B. Escudier, S. Oudard et al., “Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial,” The Lancet, vol. 372, no. 9637, pp. 449–456, 2008.
[23]  M. Mita, K. Sankhala, I. Abdel-Karim, A. Mita, and F. Giles, “Deforolimus (AP23573) a novel mTOR inhibitor in clinical development,” Expert Opinion on Investigational Drugs, vol. 17, no. 12, pp. 1947–1954, 2008.
[24]  A. M. Jubb and A. L. Harris, “Biomarkers to predict the clinical efficacy of bevacizumab in cancer,” The Lancet Oncology, vol. 11, no. 12, pp. 1172–1183, 2010.
[25]  W. L. Ince, A. M. Jubb, S. N. Holden et al., “Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab,” Journal of the National Cancer Institute, vol. 97, no. 13, pp. 981–989, 2005.
[26]  L. Zahiragic, C. Schliemann, R. Bieker et al., “Bevacizumab reduces VEGF expression in patients with relapsed and refractory acute myeloid leukemia without clinical antileukemic activity,” Leukemia, vol. 21, no. 6, pp. 1310–1312, 2007.
[27]  Y. Shaked, A. Ciarrocchi, M. Franco et al., “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors,” Science, vol. 313, no. 5794, pp. 1785–1787, 2006.
[28]  C. Porta, J. Bellmunt, T. Eisen, C. Szczylik, and P. Mulders, “Treating the individual: the need for a patient-focused approach to the management of renal cell carcinoma,” Cancer Treatment Reviews, vol. 36, no. 1, pp. 16–23, 2010.
[29]  B. I. Rini, D. P. Cohen, D. R. Lu et al., “Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib,” Journal of the National Cancer Institute, vol. 103, no. 9, pp. 763–773, 2011.
[30]  K. Huang, C. Andersson, G. M. Roomans, N. Ito, and L. Claesson-Welsh, “Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers,” International Journal of Biochemistry and Cell Biology, vol. 33, no. 4, pp. 315–324, 2001.
[31]  J. Dixelius, T. M?kinen, M. Wirzenius et al., “Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 40973–40979, 2003.
[32]  M. Autiero, J. Waltenberger, D. Communi et al., “Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1,” Nature Medicine, vol. 9, no. 7, pp. 936–943, 2003.
[33]  Y. Cao, L. Wang, D. Nandy et al., “Neuropilin-1 upholds dedifferentiation and propagation phenotypes of renal cell carcinoma cells by activating Akt and sonic hedgehog axes,” Cancer Research, vol. 68, no. 21, pp. 8667–8672, 2008.
[34]  N. Ferrara and W. J. Henzel, “Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 161, no. 2, pp. 851–858, 1989.
[35]  N. Ferrara, K. A. Houck, L. B. Jakeman, J. Winer, and D. W. Leung, “The vascular endothelial growth factor family of polypeptides,” Journal of Cellular Biochemistry, vol. 47, no. 3, pp. 211–218, 1991.
[36]  K. A. Houck, N. Ferrara, J. Winer, G. Cachianes, B. Li, and D. W. Leung, “The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA,” Molecular Endocrinology, vol. 5, no. 12, pp. 1806–1814, 1991.
[37]  L. Jingjing, Y. Xue, N. Agarwal, and R. S. Roque, “Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor,” Investigative Ophthalmology and Visual Science, vol. 40, no. 3, pp. 752–759, 1999.
[38]  Z. Poltorak, T. Cohen, R. Sivan et al., “VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 7151–7158, 1997.
[39]  C. Whittle, K. Gillespie, R. Harrison, P. W. Mathieson, and S. J. Harper, “Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant,” Clinical Science, vol. 97, no. 3, pp. 303–312, 1999.
[40]  P. Mineur, A. C. Colige, C. F. Deroanne et al., “Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents,” Journal of Cell Biology, vol. 179, no. 6, pp. 1261–1273, 2007.
[41]  D. O. Bates, T. G. Cui, J. M. Doughty et al., “VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma,” Cancer Research, vol. 62, no. 14, pp. 4123–4131, 2002.
[42]  S. J. Harper and D. O. Bates, “VEGF-A splicing: the key to anti-angiogenic therapeutics?” Nature Reviews Cancer, vol. 8, no. 11, pp. 880–887, 2008.
[43]  T. G. Cui, R. R. Foster, M. Saleem et al., “Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein,” American Journal of Physiology—Renal Physiology, vol. 286, no. 4, pp. F767–F773, 2004.
[44]  J. Woolard, W. Y. Wang, H. S. Bevan et al., “VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression,” Cancer Research, vol. 64, no. 21, pp. 7822–7835, 2004.
[45]  A. H. R. Varey, E. S. Rennel, Y. Qiu et al., “VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy,” British Journal of Cancer, vol. 98, no. 8, pp. 1366–1379, 2008.
[46]  R. Catena, L. Larzabal, M. Larrayoz et al., “VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A,” Molecular Cancer, vol. 9, p. 320, 2010.
[47]  E. S. Rennel, E. Waine, H. Guan et al., “The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice,” British Journal of Cancer, vol. 98, no. 7, pp. 1250–1257, 2008.
[48]  E. S. Rennel, M. A. Hamdollah-Zadeh, E. R. Wheatley et al., “Recombinant human VEGF165b protein is an effective anti-cancer agent in mice,” European Journal of Cancer, vol. 44, no. 13, pp. 1883–1894, 2008.
[49]  J. Hua, C. Spee, S. Kase et al., “Recombinant human VEGF165b inhibits experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 4282–4288, 2010.
[50]  A. L. Magnussen, E. S. Rennel, J. Hua et al., “VEGF-A165b is cytoprotective and antiangiogenic in the retina,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 4273–4281, 2010.
[51]  R. O. Pritchard-Jones, D. B. A. Dunn, Y. Qiu et al., “Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma,” British Journal of Cancer, vol. 97, no. 2, pp. 223–230, 2007.
[52]  R. M. Perrin, O. Konopatskaya, Y. Qiu, S. Harper, D. O. Bates, and A. J. Churchill, “Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor,” Diabetologia, vol. 48, no. 11, pp. 2422–2427, 2005.
[53]  Y. A. Muller, Y. Chen, H. W. Christinger et al., “VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4?A resolution and mutational analysis of the interface,” Structure, vol. 6, no. 9, pp. 1153–1167, 1998.
[54]  K. Miller, M. Wang, J. Gralow et al., “Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer,” New England Journal of Medicine, vol. 357, no. 26, pp. 2666–2676, 2007.
[55]  A. Sandler, R. Gray, M. C. Perry et al., “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” New England Journal of Medicine, vol. 355, no. 24, pp. 2542–2550, 2006.
[56]  H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004.
[57]  R. Karni, E. de Stanchina, S. W. Lowe, R. Sinha, D. Mu, and A. R. Krainer, “The gene encoding the splicing factor SF2/ASF is a proto-oncogene,” Nature Structural and Molecular Biology, vol. 14, no. 3, pp. 185–193, 2007.
[58]  D. G. Nowak, J. Woolard, E. M. Amin et al., “Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors,” Journal of Cell Science, vol. 121, no. 20, pp. 3487–3495, 2008.
[59]  T. Ezponda, M. J. Pajares, J. Agorreta et al., “The oncoprotein SF2/ASF promotes non-small cell lung cancer survival by enhancing survivin expression,” Clinical Cancer Research, vol. 16, no. 16, pp. 4113–4125, 2010.
[60]  D. G. Nowak, E. M. Amin, E. S. Rennel et al., “Regulation of Vascular Endothelial Growth Factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis,” Journal of Biological Chemistry, vol. 285, no. 8, pp. 5532–5540, 2010.
[61]  S. Schwartz, E. Meshorer, and G. Ast, “Chromatin organization marks exon-intron structure,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 990–995, 2009.
[62]  D. Auboeuf, D. H. Dowhan, X. Li et al., “CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing,” Molecular and Cellular Biology, vol. 24, no. 1, pp. 442–453, 2004.
[63]  C. Puppin, N. Passon, A. Franzoni, D. Russo, and G. Damante, “Histone deacetylase inhibitors control the transcription and alternative splicing of prohibitin in thyroid tumor cells,” Oncology Reports, vol. 25, no. 2, pp. 393–397, 2011.
[64]  J. Ciura and P. P. Jagodzinski, “Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells,” Molecular Biology Reports, vol. 37, no. 8, pp. 3729–3734, 2010.
[65]  M. Peiris-Pages, S. J. Harper, D. O. Bates, and P. Ramani, “Balance of pro-versus anti-angiogenic splice isoforms of vascular endothelial growth factor as a regulator of neuroblastoma growth,” Journal of Pathology, vol. 222, no. 2, pp. 138–147, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133