|
Possible impact of rising sea levels on vector-borne infectious diseasesAbstract: Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas.The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings.Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly significant in resource-poor countries in the tropics and semi-tropics. Some measures to meet this threat are outlined.Vector-borne infectious diseases (VBD) are a significant cause of morbidity and mortality in humans and animals. Important vectors of human VBD are closely associated with water bodies. They include mosquitoes that lay eggs in water to produce larvae, which feed and transform into pupae in water. Mosquitoes transmit many VBD including malaria, lymphatic filariasis and dengue with recently estimated prevalence of 247, 120 and 50 million cases worldwide respectively [1-3]. Schistosomiasis transmitted by snail vectors accounts for 207 million cases worldwide [4]. Snails become infec
|