全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Specific Roles of MicroRNAs in Their Interactions with Environmental Factors

DOI: 10.1155/2012/978384

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes, including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing miRNAs-EFs interactions in the context of various of diseases. 1. Introduction MicroRNAs (miRNAs) are regulatory RNAs that are 20–30 nucleotides long that bind the 3′-untranslated regions of target mRNAs [1–3]. miRNAs have emerged as critical regulators of gene expression by modulating the expression of numerous target mRNAs mainly at the posttranscriptional level [4]. Since partial or imperfect complementarity of an miRNA to a target mRNA can lead to translational repression, a single miRNA has the ability of regulating a large number of genes [5]. miRNAs have been shown to play a role in regulating a wide range of biological processes, such as cell growth, proliferation, differentiation, development, and apoptosis [6]. In terms of their importance, dysfunction of miRNAs has been associated with various diseases [7–9]. In contrast to the wealth of publications about their biological effects, the information about specific regulations of miRNAs has comparatively lagged behind. The phenotype of an organism is determined by the complex interactions between genetic factors (GFs) and environmental factors (EFs). EFs have been shown to contribute tremendously to the formation and development of many diseases, especially complex diseases [10–12]. The interactions between GFs and EFs, often hypothesized to be mediated by epigenetic mechanisms, modulate the reproductive fitness of an organism, its response to external stimuli and health [13]. Similar to other GFs, miRNAs have complex interactions with a wide spectrum of EFs [14]. Recently, increased number

References

[1]  R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993.
[2]  R. C. Lee and V. Ambros, “An extensive class of small RNAs in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 862–864, 2001.
[3]  Y. Lee, K. Jeon, J. T. Lee, S. Kim, and V. N. Kim, “MicroRNA maturation: stepwise processing and subcellular localization,” EMBO Journal, vol. 21, no. 17, pp. 4663–4670, 2002.
[4]  D. V. Dugas and B. Bartel, “MicroRNA regulation of gene expression in plants,” Current Opinion in Plant Biology, vol. 7, no. 5, pp. 512–520, 2004.
[5]  W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[6]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[7]  A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[8]  C. L. Bartels and G. J. Tsongalis, “Mini-reviews micrornas:novel biomarkers for human cancer,” Clinical Chemistry, vol. 55, no. 4, pp. 623–631, 2009.
[9]  M. Lu, Q. Zhang, M. Deng et al., “An analysis of human microRNA and disease associations,” PLoS ONE, vol. 3, no. 10, Article ID e3420, 2008.
[10]  A. M. Soto and C. Sonnenschein, “Environmental causes of cancer: endocrine disruptors as carcinogens,” Nature Reviews Endocrinology, vol. 6, no. 7, pp. 363–370, 2010.
[11]  U. N. Das, “Obesity: genes, brain, gut, and environment,” Nutrition, vol. 26, no. 5, pp. 459–473, 2010.
[12]  W. H. Chow, L. M. Dong, and S. S. Devesa, “Epidemiology and risk factors for kidney cancer,” Nature Reviews Urology, vol. 7, no. 5, pp. 245–257, 2010.
[13]  S. M. Reamon-Buettner, V. Mutschler, and J. Borlak, “The next innovation cycle in toxicogenomics: environmental epigenetics,” Mutation Research, vol. 659, no. 1-2, pp. 158–165, 2008.
[14]  Q. Yang, C. Qiu, J. Yang, Q. Wu, and Q. Cui, “miREnvironment database: providing a bridge for microRNAs, environmental factors and phenotypes,” Bioinformatics, vol. 27, pp. 3329–3330, 2011.
[15]  R. T. Lima, S. Busacca, G. M. Almeida, G. Gaudino, D. A. Fennell, and M. H. Vasconcelos, “MicroRNA regulation of core apoptosis pathways in cancer,” European Journal of Cancer, vol. 47, no. 2, pp. 163–174, 2011.
[16]  E. Turrini, S. Haenisch, S. Laechelt, T. Diewock, O. Bruhn, and I. Cascorbi, “MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression,” Pharmacogenet Genomics, vol. 22, pp. 198–205, 2012.
[17]  M. Avissar-Whiting, K. R. Veiga, K. M. Uhl et al., “Bisphenol A exposure leads to specific microRNA alterations in placental cells,” Reproductive Toxicology, vol. 29, no. 4, pp. 401–406, 2010.
[18]  J. H. Kang, F. Kondo, and Y. Katayama, “Human exposure to bisphenol A,” Toxicology, vol. 226, no. 2-3, pp. 79–89, 2006.
[19]  Z. Lin and E. K. Flemington, “MiRNAs in the pathogenesis of oncogenic human viruses,” Cancer Letters, vol. 305, no. 2, pp. 186–199, 2011.
[20]  A. Eulalio, L. Schulte, and J. Vogel, “The mammalian microRNA response to bacterial infections,” RNA Biology, vol. 9, no. 6, pp. 742–775, 2012.
[21]  Y. Ladeiro, G. Couchy, C. Balabaud et al., “MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations,” Hepatology, vol. 47, no. 6, pp. 1955–1963, 2008.
[22]  R. C. Miranda, “MicroRNAs and fetal brain development: implications for ethanol teratology during the second trimester period of neurogenesis,” Frontiers in Genetics, vol. 3, article 77, 2012.
[23]  J. D. Tapocik, M. Solomon, M. Flanigan et al., “Coordinated dysregulation of mRNAs and microRNAs in the rat medial 4 prefrontal cortex following a history of alcohol dependence,” The Pharmacogenomics Journal. In press.
[24]  M. A. Maccani and V. S. Knopik, “Cigarette smoke exposure-associated alterations to non-coding RNA,” Frontiers in Genetics, vol. 3, article 53, 2012.
[25]  A. Izzotti, P. Larghero, C. Cartiglia et al., “Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung,” Carcinogenesis, vol. 31, no. 5, pp. 894–901, 2010.
[26]  M. A. Maccani, M. Avissar-Whiting, C. E. Banister, B. McGonnigal, J. F. Padbury, and C. J. Marsit, “Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta,” Epigenetics, vol. 5, no. 7, pp. 583–589, 2010.
[27]  A. Alisi, L. Da Sacco, G. Bruscalupi et al., “Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease,” Laboratory Investigation, vol. 91, no. 2, pp. 283–293, 2011.
[28]  L. A. Davidson, N. Wang, M. S. Shah, J. R. Lupton, I. Ivanov, and R. S. Chapkin, “n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon,” Carcinogenesis, vol. 30, no. 12, pp. 2077–2084, 2009.
[29]  C. J. Davis, S. G. Bohnet, J. M. Meyerson, and J. M. Krueger, “Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation,” Neuroscience Letters, vol. 422, no. 1, pp. 68–73, 2007.
[30]  S. Nielsen, C. Scheele, C. Yfanti et al., “Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle,” Journal of Physiology, vol. 588, no. 20, pp. 4029–4037, 2010.
[31]  M. J. Drummond, J. J. McCarthy, C. S. Fry, K. A. Esser, and B. B. Rasmussen, “Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids,” American Journal of Physiology, vol. 295, no. 6, pp. E1333–E1340, 2008.
[32]  Y. Gidron, M. De Zwaan, K. Quint, and M. Ocker, “Influence of stress and health-behaviour on miRNA expression,” Molecular Medicine Reports, vol. 3, no. 3, pp. 455–457, 2010.
[33]  C. J. Marsit, K. Eddy, and K. T. Kelsey, “MicroRNA responses to cellular stress,” Cancer Research, vol. 66, no. 22, pp. 10843–10848, 2006.
[34]  O. M. Niemoeller, M. Niyazi, S. Corradini et al., “MicroRNA expression profiles in human cancer cells after ionizing radiation,” Radiation Oncology, vol. 6, no. 1, article 29, 2011.
[35]  R. Garzon, F. Pichiorri, T. Palumbo et al., “MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia,” Oncogene, vol. 26, no. 28, pp. 4148–4157, 2007.
[36]  S. Das, N. Foley, K. Bryan et al., “MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation,” Cancer Research, vol. 70, no. 20, pp. 7874–7881, 2010.
[37]  X. M. Wu, X. Q. Shao, X. X. Meng et al., “Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells,” Acta Pharmacologica Sinica, vol. 32, no. 2, pp. 259–269, 2011.
[38]  J. L. Tong, C. P. Zhang, F. Nie et al., “MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells,” FEBS Letters, vol. 585, pp. 3560–3568, 2011.
[39]  E. San José-Enériz, J. Román-Gómez, A. Jiménez-Velasco et al., “MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations,” Molecular Cancer, vol. 8, article 69, 2009.
[40]  E. I. Zimmerman, C. M. Dollins, M. Crawford et al., “Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia,” Molecular Pharmacology, vol. 78, no. 5, pp. 811–817, 2010.
[41]  Y. Yu, L. Yang, M. Zhao et al., “Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells,” Leukemia, vol. 26, no. 8, pp. 1752–1760, 2012.
[42]  M. Y. Shah, X. Pan, L. N. Fix, M. A. Farwell, and B. Zhang, “5-fluorouracil drug alters the microrna expression profiles in MCF-7 breast cancer cells,” Journal of Cellular Physiology, vol. 226, no. 7, pp. 1868–1878, 2011.
[43]  L. Rossi, E. Bonmassar, and I. Faraoni, “Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro,” Pharmacological Research, vol. 56, no. 3, pp. 248–253, 2007.
[44]  T. Boren, Y. Xiong, A. Hakam et al., “MicroRNAs and their target messenger RNAs associated with ovarian cancer response to chemotherapy,” Gynecologic Oncology, vol. 113, no. 2, pp. 249–255, 2009.
[45]  J. Hodzic, E. Giovannetti, B. D. Calvo, A. D. Adema, and G. J. Peters, “Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells,” Nucleosides, Nucleotides and Nucleic Acids, vol. 30, pp. 1214–1222, 2011.
[46]  Q. S. Xia, Y. Ishigaki, L. Sun, R. Chen, and Y. Motoo, “Effect of anti-cancer drugs on the expression of BIC/miR-155 in human pancreatic cancer PANC-1 cells,” Zhonghua Yi Xue Za Zhi, vol. 90, no. 2, pp. 123–127, 2010.
[47]  S. Samakoglu, D. S. Deevi, H. Li et al., “Preclinical rationale for combining an EGFR antibody with cisplatin/gemcitabine for the treatment of NSCLC,” Cancer Genomics Proteomics, vol. 9, pp. 77–92, 2012.
[48]  A. Sorrentino, C. G. Liu, A. Addario, C. Peschle, G. Scambia, and C. Ferlini, “Role of microRNAs in drug-resistant ovarian cancer cells,” Gynecologic Oncology, vol. 111, no. 3, pp. 478–486, 2008.
[49]  W. Zhu, X. Shan, T. Wang, Y. Shu, and P. Liu, “MiR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines,” International Journal of Cancer, vol. 127, no. 11, pp. 2520–2529, 2010.
[50]  L. Guo, Y. Liu, Y. Bai, Y. Sun, F. Xiao, and Y. Guo, “Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis,” European Journal of Cancer, vol. 46, no. 9, pp. 1692–1702, 2010.
[51]  R. Hummel, D. I. Watson, C. Smith et al., “Mir-148a improves response to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells,” Journal of Gastrointestinal Surgery, vol. 15, no. 3, pp. 429–438, 2011.
[52]  Y. Huang, A. Chuang, H. Hao et al., “Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells,” Cell Death and Differentiation, vol. 18, no. 7, pp. 1220–1230, 2011.
[53]  E. Moussay, V. Palissot, L. Vallar et al., “Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia,” Molecular Cancer, vol. 9, article 115, 2010.
[54]  R. Zhou, P. Yuan, Y. Wang et al., “Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers,” Neuropsychopharmacology, vol. 34, no. 6, pp. 1395–1405, 2009.
[55]  H. Chen, N. Wang, M. Burmeister, and M. G. McInnis, “MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment,” International Journal of Neuropsychopharmacology, vol. 12, no. 7, pp. 975–981, 2009.
[56]  H. Rong, T. B. Liu, K. J. Yang et al., “MicroRNA-134 plasma levels before and after treatment for bipolar mania,” Journal of Psychiatric Research, vol. 45, no. 1, pp. 92–95, 2011.
[57]  W. P. Tsang and T. T. Kwok, “Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells,” Journal of Nutritional Biochemistry, vol. 21, no. 2, pp. 140–146, 2010.
[58]  S. Ali, A. Ahmad, S. Banerjee et al., “Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF,” Cancer Research, vol. 70, no. 9, pp. 3606–3617, 2010.
[59]  C. D. Davis and S. A. Ross, “Evidence for dietary regulation of microRNA expression in cancer cells,” Nutrition Reviews, vol. 66, no. 8, pp. 477–482, 2008.
[60]  J. Yang, Y. Cao, J. Sun, and Y. Zhang, “Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells,” Medical Oncology, vol. 27, no. 4, pp. 1114–1118, 2010.
[61]  Y. Li, X. Zhu, J. Gu et al., “Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis,” Hematology, vol. 15, no. 4, pp. 215–221, 2010.
[62]  J. Ji, J. Shi, A. Budhu et al., “MicroRNA expression, survival, and response to interferon in liver cancer,” New England Journal of Medicine, vol. 361, no. 15, pp. 1437–1447, 2009.
[63]  C. A. McClung and E. J. Nestler, “Neuroplasticity mediated by altered gene expression,” Neuropsychopharmacology, vol. 33, no. 1, pp. 3–17, 2008.
[64]  A. Z. Pietrzykowski, R. M. Friesen, G. E. Martin et al., “Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol,” Neuron, vol. 59, no. 2, pp. 274–287, 2008.
[65]  V. Chandrasekar and J. L. Dreyer, “microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity,” Molecular and Cellular Neuroscience, vol. 42, no. 4, pp. 350–362, 2009.
[66]  V. Chandrasekar and J. L. Dreyer, “Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference,” Neuropsychopharmacology, vol. 36, no. 6, pp. 1149–1164, 2011.
[67]  A. Wanet, A. Tacheny, T. Arnould, and P. Renard, “miR-212/132 expression and functions: within and beyond the neuronal compartment,” Nucleic Acids Research, vol. 40, pp. 4742–4753, 2012.
[68]  J. A. Hollander, H. I. Im, A. L. Amelio et al., “Striatal microRNA controls cocaine intake through CREB signalling,” Nature, vol. 466, no. 7303, pp. 197–202, 2010.
[69]  H. I. Im, J. A. Hollander, P. Bali, and P. J. Kenny, “MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212,” Nature Neuroscience, vol. 13, no. 9, pp. 1120–1127, 2010.
[70]  S. L. Lin, H. Kim, and S. Y. Ying, “Intron-mediated RNA interference and microRNA (miRNA),” Frontiers in Bioscience, vol. 13, no. 6, pp. 2216–2230, 2008.
[71]  D. Bhaumik, G. K. Scott, S. Schokrpur, C. K. Patil, J. Campisi, and C. C. Benz, “Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells,” Oncogene, vol. 27, no. 42, pp. 5643–5647, 2008.
[72]  M. J. Jardim, R. C. Fry, I. Jaspers, L. Dailey, and D. Diaz-Sanchez, “Disruption of MicroRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways,” Environmental Health Perspectives, vol. 117, no. 11, pp. 1745–1751, 2009.
[73]  V. Bollati, B. Marinelli, P. Apostoli et al., “Exposure to metal-rich particulate matter modifies the expression of candidate MicroRNAs in peripheral blood leukocytes,” Environmental Health Perspectives, vol. 118, no. 6, pp. 763–768, 2010.
[74]  X. Wang, L. Ye, Y. Zhou, M. Q. Liu, D. J. Zhou, and W. Z. Ho, “Inhibition of anti-HIV microRNA expression: a mechanism for opioid-mediated enhancement of HIV infection of monocytes,” American Journal of Pathology, vol. 178, no. 1, pp. 41–47, 2011.
[75]  G. Sun, H. Li, X. Wu et al., et al., “Interplay between HIV-1 infection and host microRNAs,” Nucleic Acids Research, vol. 40, pp. 2181–2196, 2012.
[76]  M. T. Bolisetty, G. Dy, W. Tam, and K. L. Beemon, “Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival,” Journal of Virology, vol. 83, no. 23, pp. 12009–12017, 2009.
[77]  Y. J. Ma, J. Yang, X. L. Fan et al., et al., “Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells,” Journal of Cellular and Molecular Medicine, vol. 16, no. 10, pp. 2539–2546, 2012.
[78]  N. Motsch, T. Pfuhl, J. Mrazek, S. Barth, and F. A. Gr?sser, “Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a,” RNA Biology, vol. 4, no. 3, pp. 131–137, 2007.
[79]  J. H. Kim, W. S. Kim, and C. Park, “Epstein-Barr virus latent membrane protein-1 protects B-cell lymphoma from rituximab-induced apoptosis through miR-155-mediated Akt activation and up-regulation of Mcl-1,” Leukemia & Lymphoma, vol. 53, no. 8, pp. 1586–1591, 2012.
[80]  M. Tomita, Y. Tanaka, and N. Mori, “MicroRNA miR-146a is induced by HTLV-1 tax and increases the growth of HTLV-1-infected T-cells,” International Journal of Cancer, vol. 130, pp. 2300–2309, 2012.
[81]  K. Pichler, G. Schneider, and R. Grassmann, “MicroRNA miR-146a and further oncogenesis-related cellular microRNAs are dysregulated in HTLV-1-transformed T lymphocytes,” Retrovirology, vol. 5, article 100, 2008.
[82]  K. V. Mohan, K. Devadas, S. Sainath Rao, I. Hewlett, and C. Atreya, “Identification of XMRV infection-associated microRNAs in four cell types in culture,” PLoS ONE, vol. 7, Article ID e32853, 2012.
[83]  A. Dittmer and K. Forstemann, “Murine cytomegalovirus infection of cultured mouse cells induces expression of miR-7a,” Journal of General Virology, vol. 93, pp. 1537–1547, 2012.
[84]  D. Santhakumar, T. Forster, N. N. Laqtom et al., “Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13830–13835, 2010.
[85]  Y. Zhang, Y. Jia, R. Zheng et al., “Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases,” Clinical Chemistry, vol. 56, no. 12, pp. 1830–1838, 2010.
[86]  G. L. Zhang, Y. X. Li, S. Q. Zheng, M. Liu, X. Li, and H. Tang, “Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210,” Antiviral Research, vol. 88, no. 2, pp. 169–175, 2010.
[87]  R. E. Lanford, E. S. Hildebrandt-Eriksen, A. Petri et al., “Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection,” Science, vol. 327, no. 5962, pp. 198–201, 2010.
[88]  C. Braconi, N. Valeri, P. Gasparini et al., “Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes,” Clinical Cancer Research, vol. 16, no. 3, pp. 957–966, 2010.
[89]  M. P. Myklebust, O. Bruland, O. Fluge, A. Skarstein, L. Balteskard, and O. Dahl, “MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer,” British Journal of Cancer, vol. 105, pp. 1719–1725, 2011.
[90]  C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, “Molecular biology: modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA,” Science, vol. 309, no. 5740, pp. 1577–1581, 2005.
[91]  J. I. Henke, D. Goergen, J. Zheng et al., “microRNA-122 stimulates translation of hepatitis C virus RNA,” EMBO Journal, vol. 27, no. 24, pp. 3300–3310, 2008.
[92]  L. Qiu, H. Fan, W. Jin et al., “MiR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV,” Biochemical and Biophysical Research Communications, vol. 398, no. 4, pp. 771–777, 2010.
[93]  F. El-Assaad, C. Hempel, V. Combes et al., “Differential microRNA expression in experimental cerebral and noncerebral malaria,” Infection and Immunity, vol. 79, no. 6, pp. 2379–2384, 2011.
[94]  D. Deli?, M. Dkhil, S. Al-Quraishy, and F. Wunderlich, “Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria,” Parasitology Research, vol. 108, no. 5, pp. 1111–1121, 2011.
[95]  M. A. Maccani and C. J. Marsit, “Exposure and fetal growth-associated miRNA alterations in the human placenta,” Clinical Epigenetics, vol. 2, pp. 401–404, 2011.
[96]  S. Xi, M. Yang, Y. Tao et al., “Cigarette smoke induces C/EBP-β-mediated activation of mir-31 in normal human respiratory epithelia and lung cancer cells,” PLoS ONE, vol. 5, no. 10, Article ID e13764, 2010.
[97]  F. Schembri, S. Sridhar, C. Perdomo et al., “MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2319–2324, 2009.
[98]  A. Izzotti, G. A. Calin, P. Arrigo, V. E. Steele, C. M. Croce, and S. De Flora, “Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke,” The FASEB Journal, vol. 23, no. 3, pp. 806–812, 2009.
[99]  P. Kaur, A. Armugam, and K. Jeyaseelan, “MicroRNAs in neurotoxicity,” Journal of Toxicology, vol. 2012, Article ID 870150, 15 pages, 2012.
[100]  P. Sathyan, H. B. Golden, and R. C. Miranda, “Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium,” Journal of Neuroscience, vol. 27, no. 32, pp. 8546–8557, 2007.
[101]  S. Balaraman, U. H. Winzer-Serhan, and R. C. Miranda, “Opposing actions of ethanol and nicotine on microRNAs are mediated by nicotinic acetylcholine receptors in fetal cerebral cortical-derived neural progenitor cells,” Alcoholism: Clinical and Experimental Research, vol. 36, no. 10, pp. 1669–1677, 2012.
[102]  T. L. Tal, J. A. Franzosa, S. C. Tilton et al., “MicroRNAs control neurobehavioral development and function in zebrafish,” The FASEB Journal, vol. 26, pp. 1452–1461, 2012.
[103]  S. Bala and G. Szabo, “MicroRNA signature in alcoholic liver disease,” International Journal of Hepatology, vol. 2012, Article ID 498232, 6 pages, 2012.
[104]  H. Yin, M. Hu, R. Zhang, Z. Shen, L. Flatow, and M. You, “MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1,” The Journal of Biological Chemistry, vol. 287, pp. 9817–9826, 2012.
[105]  K. R. Diller, “Stress protein expression kinetics,” Annual Review of Biomedical Engineering, vol. 8, pp. 403–424, 2006.
[106]  B. A. Miller, “The role of TRP channels in oxidative stress-induced cell death,” Journal of Membrane Biology, vol. 209, no. 1, pp. 31–41, 2006.
[107]  J. Dresios, A. Aschrafi, G. C. Owens, P. W. Vanderklish, G. M. Edelman, and V. P. Mauro, “Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alter microRNA levels, and enhances global protein synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 1865–1870, 2005.
[108]  G. J. Wilmink, C. L. Roth, B. L. Ibey et al., “Identification of microRNAs associated with hyperthermia-induced cellular stress response,” Cell Stress and Chaperones, vol. 15, no. 6, pp. 1027–1038, 2010.
[109]  R. Kulshreshtha, R. V. Davuluri, G. A. Calin, and M. Ivan, “A microRNA component of the hypoxic response,” Cell Death and Differentiation, vol. 15, no. 4, pp. 667–671, 2008.
[110]  K. Saito, E. Kondo, and M. Matsushita, “MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6,” Nucleic Acids Research, vol. 39, pp. 6086–6099, 2011.
[111]  Y. C. Chan, S. Khanna, S. Roy, and C. K. Sen, “MiR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells,” Journal of Biological Chemistry, vol. 286, no. 3, pp. 2047–2056, 2011.
[112]  R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007.
[113]  Z. Hua, Q. Lv, W. Ye et al., “Mirna-directed regulation of VEGF and other angiogenic under hypoxia,” PLoS ONE, vol. 1, no. 1, article e116, 2006.
[114]  R. B. Donker, J. F. Mouillet, D. M. Nelson, and Y. Sadovsky, “The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts,” Molecular Human Reproduction, vol. 13, no. 4, pp. 273–279, 2007.
[115]  R. Jiang, F. B. Hu, E. L. Giovannucci et al., “Joint association of alcohol and folate intake with risk of major chronic disease in women,” American Journal of Epidemiology, vol. 158, no. 8, pp. 760–771, 2003.
[116]  S. J. James, I. P. Pogribny, M. Pogribna, B. J. Miller, S. Jernigan, and S. Melnyk, “Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis,” Journal of Nutrition, vol. 133, pp. 3740S–3747S, 2003.
[117]  H. R. Guo, “Cancer risks associated with arsenic in drinking water,” Environmental Health Perspectives, vol. 115, no. 7, pp. A339–A340, 2007.
[118]  H. Chen, S. F. Li, J. Liu, B. A. Diwan, J. C. Barrett, and M. P. Waalkes, “Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis,” Carcinogenesis, vol. 25, no. 9, pp. 1779–1786, 2004.
[119]  S. Bhana and D. R. Lloyd, “The role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts,” Mutagenesis, vol. 23, no. 1, pp. 43–50, 2008.
[120]  P. Pitsikas, D. Lee, and A. J. Rainbow, “Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2,” Mutagenesis, vol. 22, no. 3, pp. 235–243, 2007.
[121]  L. Barbour, L. G. Ball, K. Zhang, and W. Xiao, “DNA damage checkpoints are involved in postreplication repair,” Genetics, vol. 174, no. 4, pp. 1789–1800, 2006.
[122]  J. Pothof, N. S. Verkaik, W. Van Ijcken et al., “MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response,” EMBO Journal, vol. 28, no. 14, pp. 2090–2099, 2009.
[123]  S. Shin, H. J. Cha, E. M. Lee et al., “Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells,” International Journal of Oncology, vol. 35, no. 1, pp. 81–86, 2009.
[124]  H. J. Cha, K. M. Seong, S. Bae et al., “Identification of specific microRNAs responding to low and high dose γ-irradiation in the human lymphoblast line IM9,” Oncology Reports, vol. 22, no. 4, pp. 863–868, 2009.
[125]  C. Qiu, G. Chen, and Q. Cui, “Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases,” Scientific Reports, vol. 2, article 318, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133