The development of the in vitro selection technique has allowed the isolation of functional nucleic acids, including catalytic DNA molecules (DNAzymes), from random-sequence pools. The first-ever catalytic DNA obtained by this technique in 1994 is a DNAzyme that cleaves RNA. Since then, many other RNase-like DNAzymes have been reported from multiple in vitro selection studies. The discovery of various RNase DNAzymes has in turn stimulated the exploration of these enzymatic species for innovative applications in many different areas of research, including therapeutics, biosensing, and DNA nanotechnology. One particular research topic that has received considerable attention for the past decade is the development of RNase DNAzymes into fluorescent reporters for biosensing applications. This paper provides a concise survey of the most significant achievements within this research topic. 1. Introduction A biosensor is an analytical device composed of two key components: a molecular recognition element (MRE) that seeks a target of interest for binding and a signal transducer that works to translate the target-MRE interaction into a detectable signal. Proteins, particularly antibodies, receptors, and enzymes, have been the traditional choice of MREs in the design of biosensors for many decades. However, nucleic acids that possess a defined function, such as ligand binding and/or catalysis, have emerged as very attractive MREs over the past 20 years [1–3]. These “functional nucleic acids (FNAs)” include DNA and RNA aptamers, ribozymes (RNA-based enzymes), DNAzymes (DNA-based enzymes), and aptazymes (ribozyme-aptamer or DNAzyme-aptamer conjugates in which the catalytic activity of the enzyme domain is regulated by the ligand binding to the aptamer domain). FNAs, and particularly DNA aptamers and DNAzymes, are inherently more stable than proteins, resulting in more robust biosensors that can function for an increased period of time. FNAs can be created to recognize a broad range of targets by a simple test-tube evolution technique known as SELEX (Systematic Evolution of Ligands by EXponential Enrichment) or in vitro selection [4–6], a process that is short, does not require the use of animals or cells, and has little restriction on the nature of targets and the choice of experimental conditions. FNAs can be chemically synthesized at a relatively low cost with excellent batch-to-batch consistency. They can be facilely immobilized onto a solid matrix. They are easy to modify with sensing probes to allow the detection by many different methods. Binding of targets
References
[1]
N. K. Navani and Y. Li, “Nucleic acid aptamers and enzymes as sensors,” Current Opinion in Chemical Biology, vol. 10, no. 3, pp. 272–281, 2006.
[2]
W. Mok and Y. Li, “Recent progress in nucleic acid aptamer-based biosensors and bioassays,” Sensors, vol. 8, no. 11, pp. 7050–7084, 2008.
[3]
J. Liu, Z. Cao, and Y. Lu, “Functional nucleic acid sensors,” Chemical Reviews, vol. 109, no. 5, pp. 1948–1998, 2009.
[4]
D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, no. 6265, pp. 467–468, 1990.
[5]
C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990.
[6]
A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990.
[7]
Y. Li and R. R. Breaker, “Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group,” Journal of the American Chemical Society, vol. 121, no. 23, pp. 5364–5372, 1999.
[8]
S. K. Silverman, “In vitro selection, characterization, and application of deoxyribozymes that cleave RNA,” Nucleic Acids Research, vol. 33, no. 19, pp. 6151–6163, 2005.
[9]
K. Schlosser and Y. Li, “Biologically inspired synthetic enzymes made from DNA,” Chemistry and Biology, vol. 16, no. 3, pp. 311–322, 2009.
[10]
K. Schlosser and Y. Li, “A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8-17 RNA-cleaving DNAzyme,” ChemBioChem, vol. 11, no. 7, pp. 866–879, 2010.
[11]
R. R. Breaker and G. F. Joyce, “A DNA enzyme that cleaves RNA,” Chemistry and Biology, vol. 1, no. 4, pp. 223–229, 1994.
[12]
R. R. Breaker and G. F. Joyce, “A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity,” Chemistry and Biology, vol. 2, no. 10, pp. 655–660, 1995.
[13]
D. Faulhammer and M. Famulok, “The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme,” Angewandte Chemie—International Edition, vol. 35, no. 23-24, pp. 2837–2841, 1997.
[14]
J. Li, W. Zheng, A. H. Kwon, and Y. Lu, “In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme,” Nucleic Acids Research, vol. 28, no. 2, pp. 481–488, 2000.
[15]
J. C. F. Lam, J. B. Withers, and Y. Li, “A complex RNA-cleaving DNAzyme that can efficiently cleave a pyrimidine-pyrimidine junction,” Journal of Molecular Biology, vol. 400, no. 4, pp. 689–701, 2010.
[16]
J. Liu, A. K. Brown, X. Meng et al., “A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2056–2061, 2007.
[17]
C. R. Geyer and D. Sen, “Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme,” Chemistry and Biology, vol. 4, no. 8, pp. 579–593, 1997.
[18]
A. Roth and R. R. Breaker, “An amino acid as a cofactor for a catalytic polynucleotide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6027–6031, 1998.
[19]
S. W. Santoro and G. F. Joyce, “A general purpose RNA-cleaving DNA enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4262–4266, 1997.
[20]
R. P. G. Cruz, J. B. Withers, and Y. Li, “Dinucleotide junction cleavage versatility of 8–17 deoxyribozyme,” Chemistry and Biology, vol. 11, no. 1, pp. 57–67, 2004.
[21]
K. Schlosser and Y. Li, “Tracing sequence diversity change of RNA-cleaving deoxyribozymes under increasing selection pressure during in vitro selection,” Biochemistry, vol. 43, no. 30, pp. 9695–9707, 2004.
[22]
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, NY, USA, 1999.
[23]
W. Chiuman and Y. Li, “Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates,” Nucleic Acids Research, vol. 35, no. 2, pp. 401–405, 2007.
[24]
J. Li and Y. Lu, “A highly sensitive and selective catalytic DNA biosensor for lead ions,” Journal of the American Chemical Society, vol. 122, no. 42, pp. 10466–10467, 2000.
[25]
L. M. Lu, X. B. Zhang, R. M. Kong, B. Yang, and W. Tan, “A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal,” Journal of the American Chemical Society, vol. 133, no. 30, pp. 11686–11691, 2011.
[26]
S. H. J. Mei, Z. Liu, J. D. Brennan, and Y. Li, “An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling,” Journal of the American Chemical Society, vol. 125, no. 2, pp. 412–420, 2003.
[27]
Z. Liu, S. H. J. Mei, J. D. Brennan, and Y. Li, “Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences,” Journal of the American Chemical Society, vol. 125, no. 25, pp. 7539–7545, 2003.
[28]
W. Chiuman and Y. Li, “Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores,” Journal of Molecular Biology, vol. 357, no. 3, pp. 748–754, 2006.
[29]
W. Chiuman and Y. Li, “Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction,” Chemistry and Biology, vol. 13, no. 10, pp. 1061–1069, 2006.
[30]
W. Chiuman and Y. Li, “Simple fluorescent sensors engineered with catalytic DNA “MgZ” based on a non-classic allosteric design,” PLoS ONE, vol. 2, no. 11, Article ID e1224, 2007.
[31]
S. A. Kandadai and Y. Li, “Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme,” Nucleic Acids Research, vol. 33, no. 22, pp. 7164–7175, 2005.
[32]
Y. Shen, J. D. Brennan, and Y. Li, “Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme,” Biochemistry, vol. 44, no. 36, pp. 12066–12076, 2005.
[33]
M. M. Ali, S. A. Kandadai, and Y. Li, “Characterization of pH3DZ1—an RNA-cleaving deoxyribozyme with optimal activity at pH 3,” Canadian Journal of Chemistry, vol. 85, no. 4, pp. 261–273, 2007.
[34]
S. A. Kandadai, W. W. K. Mok, M. M. Ali, and Y. Li, “Characterization of an RNA-cleaving deoxyribozyme with optimal activity at pH 5,” Biochemistry, vol. 48, no. 31, pp. 7383–7391, 2009.
[35]
T. Lan, K. Furuya, and Y. Lu, “A highly selective lead sensor based on a classic lead DNAzyme,” Chemical Communications, vol. 46, no. 22, pp. 3896–3898, 2010.
[36]
J. Liu and Y. Lu, “Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity,” Angewandte Chemie—International Edition, vol. 46, no. 40, pp. 7587–7590, 2007.
[37]
J. Tang and R. R. Breaker, “Rational design of allosteric ribozymes,” Chemistry and Biology, vol. 4, no. 6, pp. 453–459, 1997.
[38]
G. A. Soukup and R. R. Breaker, “Engineering precision RNA molecular switches,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3584–3589, 1999.
[39]
D. Y. Wang, B. H. Y. Lai, and D. Sen, “A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes,” Journal of Molecular Biology, vol. 318, no. 1, pp. 33–43, 2002.
[40]
M. Levy and A. D. Ellington, “ATP-dependent allosteric DNA enzymes,” Chemistry and Biology, vol. 9, no. 4, pp. 417–426, 2002.
[41]
R. Nutiu and Y. Li, “Structure-switching signaling aptamers,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4771–4778, 2003.
[42]
J. C. Achenbach, R. Nutiu, and Y. Li, “Structure-switching allosteric deoxyribozymes,” Analytica Chimica Acta, vol. 534, no. 1, pp. 41–51, 2005.
[43]
Y. Shen, W. Chiuman, J. D. Brennan, and Y. Li, “Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure,” ChemBioChem, vol. 7, no. 9, pp. 1343–1348, 2006.
[44]
M. M. Ali, S. D. Aguirre, H. Lazim, and Y. Li, “Fluorogenic DNAzyme probes as bacterial indicators,” Angewandte Chemie—International Edition, vol. 50, no. 16, pp. 3751–3754, 2011.
[45]
S. D. Aguirre, M. M. Ali, S. D. Aguirre, P. Kanda, and Y. Li, “Detection of bacteria using fluorogenic DNAzymes,” The Journal of Visualized Experiments, no. 63, article 3961, 2012.
[46]
X. B. Zhang, Z. Wang, H. Xing, Y. Xiang, and Y. Lu, “Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity,” Analytical Chemistry, vol. 82, no. 12, pp. 5005–5011, 2010.
[47]
R. Kong, X. Zhang, Z. Chen et al., “Unimolecular catalytic DNA biosensor for amplified detection of L-histidine via an enzymatic recycling cleavage strategy,” Analytical Chemistry, vol. 83, no. 20, pp. 7603–7607, 2011.