全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dioxaphosphorinane-Constrained Nucleic Acid Dinucleotides as Tools for Structural Tuning of Nucleic Acids

DOI: 10.1155/2012/215876

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of , -D-CNA exhibiting wether B-type canonical values or not. 1. Introduction It is now clear that nucleic acids play several different roles in the living cell from genetic code storage to the catalysis of chemical reactions in ribosome. All of these particular behaviours are associated with various and very often transient structures of these polymers. The most prevalent secondary structure of nucleic acids is the double helix that can adopt either A- or B-type depending on the hydration level and/or the 2′-deoxyribosyl or ribosyl nature of the hybridized strands. While the backbone organization of double-stranded DNA and RNA is normally quite regular, there are many other secondary and tertiary structures that DNA and RNA molecules can adopt in vivo [1]. It is also well established that these disparate structures, which are predisposed to promote a significant local conformational heterogeneity in the sugar-phosphate backbone, play a crucial role in the fundamental biological processes where protein-nucleic acid interactions, folding, or catalytic activity are involved [2]. As a consequence nucleic acids can fold into biologically relevant distinct structures such as bulges, hairpin loops, U-turns, adenosine platforms, branched junctions, or quadruplexes (Figure 1). As proposed by few studies, the sugar/phosphate backbone of these unusual motifs exhibit a variety of conformations, which markedly differ from the regular conformational states of duplex DNA and RNA molecules [3–8]. However, the intrinsic role imparted to the phosphate diester backbone in respect with bases sequence in stamping these structures is still not properly defined. Figure 1: Examples of DNA secondary structures and associated backbone-torsion angles γ/ β/ α/ ε/ ζ of representative dinucleotide units. The following 6-fold staggered pattern of the torsional angles is used: cis = ° (c), gauche(+) = ° (g +), anticlinal(+) = ° (a +), trans = ° ( ), anticlinal(?) = ° (a ?), and gauche(?) = ° (g ?). The notation g ?/a ? is

References

[1]  P. Belmont, J. F. Constant, and M. Demeunynck, “Nucleic acid conformation diversity: from structure to function and regulation,” Chemical Society Reviews, vol. 30, no. 1, pp. 70–81, 2001.
[2]  A. A. Antson, “Single stranded RNA binding proteins,” Current Opinion in Structural Biology, vol. 10, no. 1, pp. 87–94, 2000.
[3]  E. Ennifar, M. Yusupov, P. Walter et al., “The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges,” Structure, vol. 7, no. 11, pp. 1439–1449, 1999.
[4]  V. Tereshko, S. T. Wallace, N. Usman, F. E. Wincott, and M. Egli, “X-ray crystallographic observation of “in-line” and “adjacent” conformations in a bulged self-cleaving RNA/DNA hybrid,” RNA, vol. 7, no. 3, pp. 405–420, 2001.
[5]  L.-W. Hung, E. L. Holbrook, and S. R. Holbrook, “The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5107–5112, 2000.
[6]  W. G. Scott, J. T. Finch, and A. Klug, “The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage,” Cell, vol. 81, no. 7, pp. 991–1002, 1995.
[7]  J. A. Ippolito and T. A. Steitz, “A 1.3-? resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 17, pp. 9819–9824, 1998.
[8]  J. H. Cate, A. R. Gooding, E. Podell et al., “RNA tertiary structure mediation by adenosine platforms,” Science, vol. 273, no. 5282, pp. 1696–1699, 1996.
[9]  X.-J. Lu, Z. Shakked, and W. K. Olson, “A-form conformational motifs in ligand-bound DNA structures,” Journal of Molecular Biology, vol. 300, no. 4, pp. 819–840, 2000.
[10]  W. K. Olson, A. A. Gorin, X.-J. Lu, L. M. Hock, and V. B. Zhurkin, “DNA sequence-dependent deformability deduced from protein-DNA crystal complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11163–11168, 1998.
[11]  P. Várnai, D. Djuranovic, R. Lavery, and B. Hartmann, “α/γ transitions in the B-DNA backbone,” Nucleic Acids Research, vol. 30, no. 24, pp. 5398–5406, 2002.
[12]  F. Guo, D. N. Gopaul, and G. D. Van Duyne, “Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7143–7148, 1999.
[13]  M. Lewis, G. Chang, N. C. Horton et al., “Crystal structure of the lactose operon repressor and its complexes with DNA and inducer,” Science, vol. 271, no. 5253, pp. 1247–1254, 1996.
[14]  L. Tora and H. Timmers, “The TATA box regulates TATA-binding protein (TBP) dynamics in vivo,” Trends in Biochemical Sciences, vol. 35, no. 6, pp. 309–314, 2010.
[15]  K. Furuita, S. Murata, J. G. Jee, S. Ichikawa, A. Matsuda, and C. Kojima, “Structural feature of bent DNA recognized by HMGB1,” Journal of the American Chemical Society, vol. 133, no. 15, pp. 5788–5790, 2011.
[16]  A. J. A. Cobb, “Recent highlights in modified oligonucleotide chemistry,” Organic and Biomolecular Chemistry, vol. 5, no. 20, pp. 3260–3275, 2007.
[17]  N. M. Bell and J. Micklefield, “Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications,” ChemBioChem, vol. 10, no. 17, pp. 2691–2703, 2009.
[18]  C. Zhou and J. Chattopadhyaya, “The synthesis of therapeutic locked nucleos(t)ides,” Current Opinion in Drug Discovery and Development, vol. 12, no. 6, pp. 876–898, 2009.
[19]  J. Lebreton, J.-M. Escudier, L. Arzel, and C. Len, “Synthesis of bicyclonucleosides having a C-C bridge,” Chemical Reviews, vol. 110, no. 6, pp. 3371–3418, 2010.
[20]  K. Seio, T. Wada, K. Sakamoto, S. Yokoyama, and M. Sekine, “Chemical synthesis and properties of conformationally fixed diuridine monophosphates as building blocks of the RNA turn motif,” Journal of Organic Chemistry, vol. 63, no. 5, pp. 1429–1443, 1998.
[21]  K. Seio, T. Wada, K. Sakamoto, S. Yokoyama, and M. Sekine, “Chemical synthesis and conformational properties of a new cyclouridylic acid having an ethylene bridge between the uracil 5-position and -phosphate group,” Journal of Organic Chemistry, vol. 61, no. 4, pp. 1500–1504, 1996.
[22]  M. Sekine, O. Kurasawa, K.-I. Shohda, K. Seio, and T. Wada, “Synthesis and properties of oligonucleotides having a phosphorus chiral center by incorporation of conformationally rigid -cyclouridylic acid derivatives,” Journal of Organic Chemistry, vol. 65, no. 20, pp. 6515–6524, 2000.
[23]  K. Seio, T. Wada, and M. Sekine, “Synthesis and properties of oligothymidylates incorporating an artificial bend motif,” Helvetica Chimica Acta, vol. 83, no. 1, pp. 162–180, 2000.
[24]  A. M. S?rensen and P. Nielsen, “Synthesis of conformationally restricted dinucleotides by ring-closing metathesis,” Organic Letters, vol. 2, no. 26, pp. 4217–4219, 2000.
[25]  A. M. S?rensen, K. E. Nielsen, B. Vogg, J. P. Jacobsen, and P. Nielsen, “Synthesis and NMR-studies of dinucleotides with conformationally restricted cyclic phosphotriester linkages,” Tetrahedron, vol. 57, no. 51, pp. 10191–10201, 2001.
[26]  P. B?rsting and P. Nielsen, “Tandem ring-closing metathesis and hydrogenation towards cyclic dinucleotides,” Chemical Communications, no. 18, pp. 2140–2141, 2002.
[27]  P. B?rsting, A. M. S?rensen, and P. Nielsen, “A ring-closing metathesis strategy towards conformationally restricted di- and trinucleotides,” Synthesis, no. 6, pp. 797–801, 2002.
[28]  P. Bersting, K. E. Nielsen, and P. Nielsenl, “Stabilisation of a nucleic acid three-way junction by an oligonucleotide containing a single -C to -O-phosphate butylene linkage prepared by a tandem RCM-hydrogenation method,” Organic and Biomolecular Chemistry, vol. 3, no. 11, pp. 2183–2190, 2005.
[29]  P. B?rsting, M. S. Christensen, S. I. Steffansen, and P. Nielsen, “Synthesis of dinucleotides with -C to phosphate connections by ring-closing metathesis,” Tetrahedron, vol. 62, no. 6, pp. 1139–1149, 2006.
[30]  I. Le Clézio, J.-M. Escudier, and A. Vigroux, “Diastereoselective synthesis of a conformationally restricted dinucleotide with predefined α and β torsional angles for the construction of α,β-constrained nucleic acids (α,β-CNA),” Organic Letters, vol. 5, no. 2, pp. 161–164, 2003.
[31]  C. Dupouy, I. Le Clézio, P. Lavedan, H. Gornitzka, J.-M. Escudier, and A. Vigroux, “Diastereoselective synthesis of conformationally restricted dinucleotides featuring canonical and noncanonical α/β torsion angle combinations (α,β-D-CNA),” European Journal of Organic Chemistry, no. 24, pp. 5515–5525, 2006.
[32]  T. Mukaiyama, “Titanium tetrachloride in organic synthesis,” Angewandte Chemie—International Edition, vol. 16, no. 12, pp. 817–826, 1977.
[33]  C. Le Roux, H. Gaspard-Iloughmane, J. Dubac, J. Jaud, and P. Vignaux, “New effective catalysts for Mukaiyama-Aldol and -Michael reactions: BiCl3-metallic iodide systems,” Journal of Organic Chemistry, vol. 58, no. 7, pp. 1835–1839, 1993.
[34]  J.-M. Escudier, I. Tworkowski, L. Bouziani, and L. Gorrichon, “Synthèse stéréosélective de thymidine substituée en C- ,” Tetrahedron Letters, vol. 37, no. 27, pp. 4689–4692, 1996.
[35]  K. E. Pfitzner and J. G. Moffatt, “Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols,” Journal of the American Chemical Society, vol. 87, no. 24, pp. 5661–5670, 1965.
[36]  G. H. Jones, M. Taniguchi, D. Tegg, and J. G. Moffatt, “ -Substituted nucleosides. 5. Hydroxymethylation of nucleoside -aldehydes,” Journal of Organic Chemistry, vol. 44, no. 8, pp. 1309–1317, 1979.
[37]  V. Banuls and J.-M. Escudier, “Allylsilanes in the preparation of -C-hydroxy or bromo alkylthymidines,” Tetrahedron, vol. 55, no. 18, pp. 5831–5838, 1999.
[38]  V. Banuls, J.-M. Escudier, C. Zedde, C. Claparols, B. Donnadieu, and H. Plaisancié, “Stereoselective synthesis of ( S)- -C-(5-bromo-2-penten-1-yl)- -deoxyribofuranosyl thymine, a new convertible nucleoside,” European Journal of Organic Chemistry, no. 24, pp. 4693–4700, 2001.
[39]  G. W. Kabalka, M. Varma, R. S. Varma, P. C. Srivastava, and F. F. Knapp, “Tosylation of alcohols,” Journal of Organic Chemistry, vol. 51, no. 12, pp. 2386–2388, 1986.
[40]  M. H. Caruthers, “Chemical synthesis of DNA and DNA analogues,” Accounts of Chemical Research, vol. 24, no. 9, pp. 278–284, 1991.
[41]  C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of dinucleotides featuring canonical and non-canonical A-type duplex α, β and δ torsion angle combinations (LNA/α,β-D-CNA),” European Journal of Organic Chemistry, no. 31, pp. 5256–5264, 2007.
[42]  I. Le Clézio, A. Vigroux, and J.-M. Escudier, “Diastereoselective and regioselective synthesis of conformationally restricted thio-dioxa- and oxo-oxathiaphosphorinane dinucleotides featuring noncanonical α/β torsion angle combinations (α,β-CNAs),” European Journal of Organic Chemistry, no. 12, pp. 1935–1941, 2007.
[43]  M. Maturano, D.-A. Catana, P. Lavedan et al., “Synthesis and structural study of ribo-dioxaphosphorinane-constrained nucleic acid dinucleotides (ribo-α,β-D-CNA),” European Journal of Organic Chemistry, no. 4, pp. 721–730, 2012.
[44]  D.-A. Catana, M. Maturano, C. Payrastre, P. Lavedan, N. Tarrat, and J.-M. Escudier, “Synthesis of phostone-constrained nucleic acid (P-CNA) dinucleotides through intramolecular Arbuzov's reaction,” European Journal of Organic Chemistry, no. 34, pp. 6857–6863, 2011.
[45]  A. Hosomi and H. Sakurai, “Syntheses of γ,δ-unsaturated alcohols from allylsilanes and carbonyl compounds in the presence of titanium tetrachloride,” Tetrahedron Letters, vol. 17, no. 16, pp. 1295–1298, 1976.
[46]  I. Le Clézio, H. Gornitzka, J.-M. Escudier, and A. Vigroux, “Constrained nucleic acids (CNA). Part 2. Synthesis of conformationally restricted dinucleotide units featuring noncanonical α/β/γ or δ/ε/ζ torsion angle combinations,” Journal of Organic Chemistry, vol. 70, no. 5, pp. 1620–1629, 2005.
[47]  R. D. Youssefyeh, J. P. H. Verheyden, and J. G. Moffatt, “4′-Substituted nucleosides. 4. Synthesis of some 4′-hydroxymethyl nucleosides,” Journal of Organic Chemistry, vol. 44, no. 8, pp. 1301–1309, 1979.
[48]  S. S. Jones, B. Rayner, C. B. Reese, A. Ubasawa, and M. Ubasawa, “Synthesis of the -terminal decaribonucleoside nonaphosphate of yeast alanine transfer ribonucleic acid,” Tetrahedron, vol. 36, no. 20-21, pp. 3075–3085, 1980.
[49]  C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of dinucleotides with S-type sugar puckering and noncanonical ε and ζ torsion angle combination (ν2, ε,ζ-D-CNA),” European Journal of Organic Chemistry, no. 7, pp. 1285–1294, 2008.
[50]  C. K. H. Tseng, V. E. Marquez, G. W. A. Milne et al., “A ring-enlarged oxetanocin A analogue as an inhibitor of HIV infectivity,” Journal of Medicinal Chemistry, vol. 34, no. 1, pp. 343–349, 1991.
[51]  H. Vorbrüggen, K. Krolikiewiecz, and B. Bennua, “Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts,” Chemische Berichte, vol. 114, no. 4, pp. 1234–1255, 1981.
[52]  C. Dupouy, P. Lavedan, and J. M. Escudier, “Synthesis of spiro ε,ζ-D-CNA in xylo configuration featuring noncanonical δ/ε/ζ torsion angle combination,” Tetrahedron, vol. 63, no. 46, pp. 11235–11243, 2007.
[53]  G. H. Hakimelahi, Z. A. Proba, and K. K. Ogilvie, “High yield selective 3′-silylation of ribonucleosides,” Tetrahedron Letters, vol. 22, no. 52, pp. 5243–5246, 1981.
[54]  D. B. Dess and J. C. Martin, “A useful 12-i-5 triacetoxyperiodinane (the dess-martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-i-5 species,” Journal of the American Chemical Society, vol. 113, no. 19, pp. 7277–7287, 1991.
[55]  R. A. Torres and T. C. Bruice, “The mechanism of phosphodiester hydrolysis: near in-line attack conformations in the hammerhead ribozyme,” Journal of the American Chemical Society, vol. 122, no. 5, pp. 781–791, 2000.
[56]  H. L?nnberg, “Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight,” Organic and Biomolecular Chemistry, vol. 9, no. 6, pp. 1687–1703, 2011.
[57]  D. G. Gorenstein, R. Rowell, and J. Findlay, “Stereoelectronic effects in the reactions of epimeric 2-aryloxy-2-oxy-1,3,2-dioxaphosphorinanes and oxazaphosphorinanes,” Journal of the American Chemical Society, vol. 102, no. 15, pp. 5077–5081, 1980.
[58]  B. Schneider, S. Neidle, and H. M. Berman, “Conformations of the sugar-phosphate backbone in helical DNA crystal structures,” Biopolymers, vol. 42, no. 1, pp. 113–124, 1997.
[59]  C. Altona and M. Sundaralingam, “Gonformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants,” Journal of the American Chemical Society, vol. 95, no. 7, pp. 2333–2344, 1973.
[60]  M. Ikehara, “ -substituted -deoxypurinenucleotides their conformation and properties,” HeteroCycles, vol. 21, no. 1, pp. 75–90, 1984.
[61]  D. J. Wood, K. K. Ogilvie, and F. E. Hruska, “Proton magnetic resonance studies of dinucleotide conformation in aqueous solution. -deoxythymidylyl-( , )- -deoxy- -thymidylate, d(TpTp),” Canadian Journal of Chemistry, vol. 53, no. 18, pp. 2781–2790, 1975.
[62]  C. Dupouy, N. Iché-Tarrat, M. P. Durrieu, F. Rodriguez, J. M. Escudier, and A. Vigroux, “Watson-Crick base-pairing properties of nucleic acid analogues with stereocontrolled α and β torsion angles (α,β-D-CNAs),” Angewandte Chemie—International Edition, vol. 45, no. 22, pp. 3623–3627, 2006.
[63]  C. Dupouy, N. Iché-Tarrat, M. P. Durrieu, A. Vigroux, and J. M. Escudier, “α,β-D-CNA induced rigidity within oligonucleotides,” Organic and Biomolecular Chemistry, vol. 6, no. 16, pp. 2849–2851, 2008.
[64]  A. Boissonnet, C. Dupouy, P. Millard, M. P. Durrieu, N. Tarrat, and J. M. Escudier, “α,β-D-CNA featuring canonical and noncanonical α/β torsional angles behaviours within oligonucleotides,” New Journal of Chemistry, vol. 35, no. 7, pp. 1528–1533, 2011.
[65]  C. Dupouy, P. Millard, A. Boissonnet, and J. M. Escudier, “α,β-D-CNA preorganization of unpaired loop moiety stabilizes DNA hairpin,” Chemical Communications, vol. 46, no. 28, pp. 5142–5144, 2010.
[66]  C. W. Hilbers, H. A. Heus, M. J. P. Van Dongen, and S. S. Wijmenga, “The hairpin elements of nucleic acid structure: DNA and RNA folding,” in Nucleic Acids and Molecular Biology, F. Eckstein and D. M. J. Lilley, Eds., vol. 8, p. 56, Springer, Berlin, Germany, 1994.
[67]  I. Le Clézio, C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of an α,β-D-CNA featuring a noncanonical α/β torsion angle combination within a tetranucleotide,” European Journal of Organic Chemistry, no. 23, pp. 3894–3900, 2007.
[68]  Unpublished results.
[69]  P. S. Miller, K. N. Fang, N. S. Kondo, and P. O. P. Ts'o, “Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates,” Journal of the American Chemical Society, vol. 93, no. 24, pp. 6657–6665, 1971.
[70]  C. Zhou, O. Plashkevych, and J. Chattopadhyaya, “Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides,” Journal of Organic Chemistry, vol. 74, no. 9, pp. 3248–3265, 2009.
[71]  C. J. Leumann, “DNA analogues: from supramolecular principles to biological properties,” Bioorganic and Medicinal Chemistry, vol. 10, no. 4, pp. 841–854, 2002.
[72]  O. Martínez, V. Ecochard, S. Mahéo et al., “α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction,” PloS ONE, vol. 6, no. 10, Article ID e25510, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133