Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment). Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications. 1. Introduction Aptamers are short nucleic acids (typically 12–80 nucleotides long) capable of specific and tight binding to their target molecules. The term aptamer is derived from the Latin word aptus (fitting) and the Greek word meros (part). Aptamers are selected by a process called SELEX (systematic evolution of ligands by exponential enrichment), which was established independently by Ellington and Szostak [1], Tuerk and Gold [2], and Robertson and Joyce [3] in 1990. A typical SELEX experiment starts with a library of up to 1015 random oligonucleotides, which can be DNA, RNA, or modified RNA (e.g., 2′-OMe or 2′-F). Some members of this enormous library are anticipated to bind a desired target. The key step of the SELEX procedure is to efficiently separate those few from the nonbinding species. Selected nucleic acids are then amplified and used for further selection rounds. A successful SELEX experiment will usually result in a collection of aptamers, which can subsequently be cloned and tested individually for their binding properties. The possible aptamer targets show a great diversity ranging from small molecules, like organic dyes [4], amino acids [5] or antibiotics [6], peptides [7], proteins [8], and viruses [9] to whole cells [10]. The dissociation constants ( values) of aptamer-target complexes are comparable to those of antibodies and can reach the picomolar range. In addition, aptamers exhibit the following interesting features, which set them apart from antibodies: they are selected entirely in vitro, their synthesis has been automated, and they can easily be chemically modified [11]. Furthermore, they can be stored and shipped without problems, because the stability of DNA aptamers, in particular, is almost infinite. Importantly, they are not
References
[1]
A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, no. 6287, pp. 818–822, 1990.
[2]
C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990.
[3]
D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, no. 6265, pp. 467–468, 1990.
[4]
L. A. Holeman, S. L. Robinson, J. W. Szostak, and C. Wilson, “Isolation and characterization of fluorophore-binding RNA aptamers,” Folding and Design, vol. 3, no. 6, pp. 423–431, 1998.
[5]
K. Harada and A. D. Frankel, “Identification of two novel arginine binding DNAs,” EMBO Journal, vol. 14, no. 23, pp. 5798–5811, 1995.
[6]
H. Schürer, K. Stembera, D. Knoll et al., “Aptamers that bind to the antibiotic moenomycin A,” Bioorganic and Medicinal Chemistry, vol. 9, no. 10, pp. 2557–2563, 2001.
[7]
S. D. Mendonsa and M. T. Bowser, “In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9382–9383, 2005.
[8]
S. E. Lupold, B. J. Hicke, Y. Lin, and D. S. Coffey, “Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen,” Cancer Research, vol. 62, no. 14, pp. 4029–4033, 2002.
[9]
Z. Balogh, G. Lautner, V. Bardóczy, B. Komorowska, R. E. Gyurcsányi, and T. Mészáros, “Selection and versatile application of virus-specific aptamers,” FASEB Journal, vol. 24, no. 11, pp. 4187–4195, 2010.
[10]
M. S. L. Raddatz, A. Dolf, E. Endl, P. Knolle, M. Famulok, and G. Mayer, “Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting,” Angewandte Chemie International Edition, vol. 47, no. 28, pp. 5190–5193, 2008.
[11]
S. D. Jayasena, “Aptamers: an emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628–1650, 1999.
[12]
A. D. Keefe, S. Pai, and A. Ellington, “Aptamers as therapeutics,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 537–550, 2010.
[13]
P. R. Bouchard, R. M. Hutabarat, and K. M. Thompson, “Discovery and development of therapeutic aptamers,” Annual Review of Pharmacology and Toxicology, vol. 50, pp. 237–257, 2010.
[14]
E. W. M. Ng, D. T. Shima, P. Calias, E. T. Cunningham, D. R. Guyer, and A. P. Adamis, “Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease,” Nature Reviews Drug Discovery, vol. 5, no. 2, pp. 123–132, 2006.
[15]
G. R. Zimmermann, R. D. Jenison, C. L. Wick, J. P. Simorre, and A. Pardi, “Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA,” Nature Structural Biology, vol. 4, no. 8, pp. 644–649, 1997.
[16]
P. L. Sazani, R. Larralde, and J. W. Szostak, “A small aptamer with strong and specific recognition of the triphosphate of ATP,” Journal of the American Chemical Society, vol. 126, no. 27, pp. 8370–8371, 2004.
[17]
M. Famulok, J. S. Hartig, and G. Mayer, “Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy,” Chemical Reviews, vol. 107, no. 9, pp. 3715–3743, 2007.
[18]
R. Yamamoto, M. Katahira, S. Nishikawa, T. Baba, K. Taira, and P. K. R. Kumar, “A novel RNA motif that binds efficiently and specifically to the Tat protein of HIV and inhibits the trans-activation by Tat of transcription in vitro and in vivo,” Genes to Cells, vol. 5, no. 5, pp. 371–388, 2000.
[19]
L. Giver, D. Bartel, M. Zapp, A. Pawul, M. Green, and A. D. Ellington, “Selective optimization of the Rev-binding element of HIV-1,” Nucleic Acids Research, vol. 21, no. 23, pp. 5509–5516, 1993.
[20]
K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nature Reviews Drug Discovery, vol. 8, no. 2, pp. 129–138, 2009.
[21]
R. Juliano, M. R. Alam, V. Dixit, and H. Kang, “Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides,” Nucleic Acids Research, vol. 36, no. 12, pp. 4158–4171, 2008.
[22]
M. G. Theis, A. Knorre, B. Kellersch et al., “Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 31, pp. 11221–11226, 2004.
[23]
Y. Liu, C. T. Kuan, J. Mi et al., “Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis,” Biological Chemistry, vol. 390, no. 2, pp. 137–144, 2009.
[24]
L. Chaloin, M. J. Lehmann, G. Sczakiel, and T. Restle, “Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1,” Nucleic Acids Research, vol. 30, no. 18, pp. 4001–4008, 2002.
[25]
K. H. Choi, M. W. Park, S. Y. Lee et al., “Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer,” Molecular Cancer Therapeutics, vol. 5, no. 9, pp. 2428–2434, 2006.
[26]
J. Mi, X. Zhang, Z. N. Rabbani et al., “H1 RNA polymerase III promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity,” Nucleic Acids Research, vol. 34, no. 12, pp. 3577–3584, 2006.
[27]
G. Mayer, M. Blind, W. Nagel et al., “Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 4961–4965, 2001.
[28]
M. Hafner, A. Schmitz, I. Grüne et al., “Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance,” Nature, vol. 444, no. 7121, pp. 941–944, 2006.
[29]
A. Rhie, L. Kirby, N. Sayer et al., “Characterization of 2′-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion,” Journal of Biological Chemistry, vol. 278, no. 41, pp. 39697–39705, 2003.
[30]
N. C. Pagratis, C. Bell, Y. F. Chang et al., “Potent 2'-amino-, and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor,” Nature Biotechnology, vol. 15, no. 1, pp. 68–73, 1997.
[31]
J. Ruckman, L. S. Green, J. Beeson et al., “2'-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165): inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 20556–20567, 1998.
[32]
P. E. Burmeister, S. D. Lewis, R. F. Silva et al., “Direct in vitro selection of a 2′-O-methyl aptamer to VEGF,” Chemistry and Biology, vol. 12, no. 1, pp. 25–33, 2005.
[33]
D. Shangguan, Z. Cao, L. Meng et al., “Cell-specific aptamer probes for membrane protein elucidation in cancer cells,” Journal of Proteome Research, vol. 7, no. 5, pp. 2133–2139, 2008.
[34]
K. T. Guo, A. Paul, C. Schichor, G. Ziemer, and H. P. Wendel, “Cell-SELEX: novel perspectives of aptamer-based therapeutics,” International Journal of Molecular Sciences, vol. 9, no. 4, pp. 668–678, 2008.
[35]
L. Cerchia and V. de Franciscis, “Targeting cancer cells with nucleic acid aptamers,” Trends in Biotechnology, vol. 28, no. 10, pp. 517–525, 2010.
[36]
K. N. Morris, K. B. Jensen, C. M. Julin, M. Weil, and L. Gold, “High affinity ligands from in vitro selection: complex targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 2902–2907, 1998.
[37]
D. O'Connell, A. Koenig, S. Jennings et al., “Calcium-dependent oligonucleotide antagonists specific for L-selectin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5883–5887, 1996.
[38]
B. J. Hicke, S. R. Watson, A. Koenig et al., “DNA aptamers block L-selectin function in vivo: inhibition of human lymphocyte trafficking in SCID mice,” Journal of Clinical Investigation, vol. 98, no. 12, pp. 2688–2692, 1996.
[39]
C. H. B. Chen, G. A. Chernis, V. Q. Hoang, and R. Landgraf, “Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9226–9231, 2003.
[40]
C. M. Dollins, S. Nair, D. Boczkowski et al., “Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer,” Chemistry and Biology, vol. 15, no. 7, pp. 675–682, 2008.
[41]
A. P. Mann, A. Somasunderam, R. Nieves-Alicea et al., “Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting,” PLoS ONE, vol. 5, no. 9, article e13050, pp. 1–11, 2010.
[42]
B. J. Hicke, C. Marion, Y. F. Chang et al., “Tenascin-C aptamers are generated using tumor cells and purified protein,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48644–48654, 2001.
[43]
M. Homann and H. U. G?ringer, “Combinatorial selection of high affinity RNA ligands to live African trypanosomes,” Nucleic Acids Research, vol. 27, no. 9, pp. 2006–2014, 1999.
[44]
J. G. Bruno and J. L. Kiel, “In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection,” Biosensors and Bioelectronics, vol. 14, no. 5, pp. 457–464, 1999.
[45]
M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener, “Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels: selective targeting of endothelial regulatory protein pigpen,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 16464–16468, 2001.
[46]
D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold, “A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15416–15421, 2003.
[47]
K. Sefah, D. Shangguan, X. Xiong, M. B. O'Donoghue, and W. Tan, “Development of DNA aptamers using Cell-SELEX,” Nature Protocols, vol. 5, no. 6, pp. 1169–1185, 2010.
[48]
J. C. Cox, A. Hayhurst, J. Hesselberth, T. S. Bayer, G. Georgiou, and A. D. Ellington, “Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer,” Nucleic Acids Research, vol. 30, no. 20, p. e108, 2002.
[49]
R. K. Mosing and M. T. Bowser, “Isolating aptamers using capillary electrophoresis-SELEX (CE-SELEX),” Methods in Molecular Biology, vol. 535, pp. 33–43, 2009.
[50]
L. Cerchia, F. Ducongé, C. Pestourie et al., “Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase.,” PLoS Biology, vol. 3, no. 4, article e123, 2005.
[51]
H. Zhao and F. H. Arnold, “Directed evolution converts subtilisin E into a functional equivalent of thermitase,” Protein Engineering, vol. 12, no. 1, pp. 47–53, 1999.
[52]
M. Avci-Adali, M. Metzger, N. Perle, G. Ziemer, and H. P. Wendel, “Pitfalls of cell-systematic evolution of ligands by exponential enrichment (SELEX): existing dead cells during in vitro selection anticipate the enrichment of specific aptamers,” Oligonucleotides, vol. 20, no. 6, pp. 317–323, 2010.
[53]
G. Mayer, M. S. L. Ahmed, A. Dolf, E. Endl, P. A. Knolle, and M. Famulok, “Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures,” Nature Protocols, vol. 5, no. 12, pp. 1993–2004, 2010.
[54]
D. Shangguan, Y. Li, Z. Tang et al., “Aptamers evolved from live cells as effective molecular probes for cancer study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 11838–11843, 2006.
[55]
H. W. Chen, C. D. Medley, K. Sefah et al., “Molecular recognition of small-cell lung cancer cells using aptamers,” ChemMedChem, vol. 3, no. 6, pp. 991–1001, 2008.
[56]
D. Shangguan, L. Meng, Z. C. Cao et al., “Identification of liver cancer-specific aptamers using whole live cells,” Analytical Chemistry, vol. 80, no. 3, pp. 721–728, 2008.
[57]
K. Sefah, Z. W. Tang, D. H. Shangguan et al., “Molecular recognition of acute myeloid leukemia using aptamers,” Leukemia, vol. 23, no. 2, pp. 235–244, 2009.
[58]
Z. Tang, P. Parekh, P. Turner, R. W. Moyer, and W. Tan, “Generating aptamers for recognition of virus-infected cells,” Clinical Chemistry, vol. 55, no. 4, pp. 813–822, 2009.
[59]
C. Srisawat and D. R. Engelke, “Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins,” RNA, vol. 7, no. 4, pp. 632–641, 2001.
[60]
T. S. Romig, C. Bell, and D. W. Drolet, “Aptamer affinity chromatography: combinatorial chemistry applied to protein purification,” Journal of Chromatography B, vol. 731, no. 2, pp. 275–284, 1999.
[61]
J. K. Herr, J. E. Smith, C. D. Medley, D. Shangguan, and W. Tan, “Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells,” Analytical Chemistry, vol. 78, no. 9, pp. 2918–2924, 2006.
[62]
A. Rentmeister and M. Famulok, “Functional nucleic acid sensors as screening tools,” in Functional Nucleic Acids for Analytical Applications, L. Yingfu and L. Yi, Eds., p. 343, Springe, New York, NY, USA, 2003.
[63]
G. Liu, X. Mao, J. A. Phillips, H. Xu, W. Tan, and L. Zeng, “Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells,” Analytical Chemistry, vol. 81, no. 24, pp. 10013–10018, 2009.
[64]
J. P. Overington, B. Al-Lazikani, and A. L. Hopkins, “How many drug targets are there?” Nature Reviews Drug Discovery, vol. 5, no. 12, pp. 993–996, 2006.
[65]
D. R. Gutsaeva, J. B. Parkerson, S. D. Yerigenahally, et al., “Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease,” Blood, vol. 117, no. 2, p. 727, 2011.
[66]
L. Chen, D. Q. Li, J. Zhong, et al., “IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis,” Osteoarthritis Cartilage, vol. 19, no. 6, p. 711, 2011.
[67]
Y. Wang, Z. Z. Khaing, N. Li, et al., “Aptamer antagonists of myelin-derived inhibitors promote axon growth,” PLoS ONE, vol. 5, no. 3, article e9726, 2010.
[68]
S. Santulli-Marotto, S. K. Nair, C. Rusconi, B. Sullenger, and E. Gilboa, “Multivalent RNA aptamers that Inhibit CTLA-4 and enhance tumor immunity,” Cancer Research, vol. 63, no. 21, pp. 7483–7489, 2003.
[69]
M. Khati, M. Schüman, J. Ibrahim, Q. Sattentau, S. Gordon, and W. James, “Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers,” Journal of Virology, vol. 77, no. 23, pp. 12692–12698, 2003.
[70]
T. A. Springer, “Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm,” Cell, vol. 76, no. 2, pp. 301–314, 1994.
[71]
S. R. Barthel, J. D. Gavino, L. Descheny, and C. J. Dimitroff, “Targeting selectins and selectin ligands in inflammation and cancer,” Expert Opinion on Therapeutic Targets, vol. 11, no. 11, pp. 1473–1491, 2007.
[72]
M. C. Honorati, M. Bovara, L. Cattini, A. Piacentini, and A. Facchini, “Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis,” Osteoarthritis and Cartilage, vol. 10, no. 10, pp. 799–807, 2002.
[73]
E. Zwick, J. Bange, and A. Ullrich, “Receptor tyrosine kinase signalling as a target for cancer intervention strategies,” Endocrine-Related Cancer, vol. 8, no. 3, pp. 161–173, 2001.
[74]
H. S. Cho and D. J. Leahy, “Structure of the extracellular region of HER3 reveals an interdomain tether,” Science, vol. 297, no. 5585, pp. 1330–1333, 2002.
[75]
G. Kr?hn, U. Leiter, P. Kaskel et al., “Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer,” European Journal of Cancer, vol. 37, no. 2, pp. 251–259, 2001.
[76]
F. Hu, B. P. Liu, S. Budel et al., “Nogo-A interacts with the Nogo-66 receptor through multiple sites to create an isoform-selective subnanomolar agonist,” Journal of Neuroscience, vol. 25, no. 22, pp. 5298–5304, 2005.
[77]
C. C. Stamper, Y. Zhang, J. F. Tobin et al., “Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses,” Nature, vol. 410, no. 6828, p. 608, 2001.
[78]
D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of antitumor immunity by CTLA-4 blockade,” Science, vol. 271, no. 5256, pp. 1734–1736, 1996.
[79]
A. K. Dey, M. Khati, M. Tang, R. Wyatt, S. M. Lea, and W. James, “An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction,” Journal of Virology, vol. 79, no. 21, pp. 13806–13810, 2005.
[80]
A. K. Dey, C. Griffiths, S. M. Lea, and W. James, “Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1,” RNA, vol. 11, no. 6, pp. 873–884, 2005.
[81]
J. O. McNamara, D. Kolonias, F. Pastor et al., “Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 376–386, 2008.
[82]
H. W. Lee, S. J. Park, B. K. Choi, H. H. Kim, K. O. Nam, and B. S. Kwon, “4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1,” Journal of Immunology, vol. 169, no. 9, pp. 4882–4888, 2002.
[83]
I. Melero, W. W. Shuford, S. A. Newby et al., “Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors,” Nature Medicine, vol. 3, no. 6, pp. 682–685, 1997.
[84]
K. F. May Jr., L. Chen, P. Zheng, and Y. Liu, “Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells,” Cancer Research, vol. 62, no. 12, pp. 3459–3465, 2002.
[85]
A. Boltz, B. Piater, L. Toleikis, et al., “Bi-specific aptamers mediating tumour cell lysis,” The Journal of Biological Chemistry, vol. 268, no. 24, pp. 21896–21905, 2011.
[86]
J. P. Eder, G. F. Vande Woude, S. A. Boerner, and P. M. Lorusso, “Novel therapeutic inhibitors of the c-Met signaling pathway in cancer,” Clinical Cancer Research, vol. 15, no. 7, pp. 2207–2214, 2009.
[87]
M. I. Davis, M. J. Bennett, L. M. Thomas, and P. J. Bjorkman, “Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 17, pp. 5981–5986, 2005.
[88]
U. Wullner, I. Neef, A. Eller, M. Kleines, M. K. Tur, and S. Barth, “Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2,” Current Cancer Drug Targets, vol. 8, no. 7, pp. 554–565, 2008.
[89]
J. O. McNamara, E. R. Andrechek, Y. Wang et al., “Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras,” Nature Biotechnology, vol. 24, no. 8, pp. 1005–1015, 2006.
[90]
J. P. Dassie, X. Y. Liu, G. S. Thomas et al., “Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors,” Nature Biotechnology, vol. 27, no. 9, pp. 839–846, 2009.
[91]
T. C. Chu, K. Y. Twu, A. D. Ellington, and M. Levy, “Aptamer mediated siRNA delivery,” Nucleic Acids Research, vol. 34, no. 10, article e73, 2006.
[92]
X. Ni, Y. Zhang, J. Ribas, et al., “Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts,” The Journal of Clinical Investigation, vol. 121, no. 6, p. 2383, 2011.
[93]
T. C. Chu, J. W. Marks, L. A. Lavery et al., “Aptamer:toxin conjugates that specifically target prostate tumor cells,” Cancer Research, vol. 66, no. 12, pp. 5989–5992, 2006.
[94]
V. Bagalkot, O. C. Farokhzad, R. Langer, and S. Jon, “An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform,” Angewandte Chemie International Edition, vol. 45, no. 48, pp. 8149–8152, 2006.
[95]
S. Dhar, N. Kolishetti, S. J. Lippard, and O. C. Farokhzad, “Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 5, p. 1850, 2011.
[96]
O. C. Farokhzad, J. Cheng, B. A. Teply et al., “Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6315–6320, 2006.
[97]
V. Bagalkot, L. Zhang, E. Levy-Nissenbaum et al., “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer,” Nano Letters, vol. 7, no. 10, pp. 3065–3070, 2007.
[98]
A. Z. Wang, V. Bagalkot, C. C. Vasilliou et al., “Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy,” ChemMedChem, vol. 3, no. 9, pp. 1311–1315, 2008.
[99]
D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined ct imaging and therapy of prostate cancer,” ACS Nano, vol. 4, no. 7, pp. 3689–3696, 2010.
[100]
S. Dhar, F. X. Gu, R. Langer, O. C. Farokhzad, and S. J. Lippard, “Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA - PEG nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 45, pp. 17356–17361, 2008.
[101]
J. Zhou, H. Li, S. Li, J. Zaia, and J. J. Rossi, “Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy,” Molecular Therapy, vol. 16, no. 8, pp. 1481–1489, 2008.
[102]
J. Zhou, P. Swiderski, H. Li et al., “Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells,” Nucleic Acids Research, vol. 37, no. 9, pp. 3094–3109, 2009.
[103]
Y. A. Shieh, S. J. Yang, M. F. Wei, and M. J. Shieh, “Aptamer-based tumor-targeted drug delivery for photodynamic therapy,” ACS Nano, vol. 4, no. 3, pp. 1433–1442, 2010.
[104]
Y. F. Huang, D. Shangguan, H. Liu et al., “Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells,” ChemBioChem, vol. 10, no. 5, pp. 862–868, 2009.
[105]
C. H. B. Chen, K. R. Dellamaggiore, C. P. Ouellette et al., “Aptamer-based endocytosis of a lysosomal enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15908–15913, 2008.
[106]
C. S. M. Ferreira, M. C. Cheung, S. Missailidis, S. Bisland, and J. Gariépy, “Phototoxic aptamers selectively enter and kill epithelial cancer cells,” Nucleic Acids Research, vol. 37, no. 3, pp. 866–876, 2009.
[107]
N. Li, T. Larson, H. H. Nguyen, et al., “Directed evolution of gold nanoparticle delivery to cells,” Chemical Communications, vol. 46, no. 3, p. 392, 2010.
[108]
Y. Wu, K. Sefah, H. Liu, R. Wang, and W. Tan, “DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 5–10, 2010.
[109]
H. Liu, P. Moy, S. Kim et al., “Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium,” Cancer Research, vol. 57, no. 17, pp. 3629–3634, 1997.
[110]
U. Moll, R. Lau, M. A. Sypes, M. M. Gupta, and C. W. Anderson, “DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues,” Oncogene, vol. 18, no. 20, pp. 3114–3126, 1999.
[111]
H. Ginisty, F. Amalric, and P. Bouvet, “Nucleolin functions in the first step of ribosomal RNA processing,” EMBO Journal, vol. 17, no. 5, pp. 1476–1486, 1998.
[112]
D. Ishimaru, L. Zuraw, S. Ramalingam et al., “Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1),” Journal of Biological Chemistry, vol. 285, no. 35, pp. 27182–27191, 2010.
[113]
S. Soundararajan, L. Wang, V. Sridharan et al., “Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells,” Molecular Pharmacology, vol. 76, no. 5, pp. 984–991, 2009.
[114]
S. Soundararajan, W. Chen, E. K. Spicer, N. Courtenay-Luck, and D. J. Fernandes, “The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells,” Cancer Research, vol. 68, no. 7, pp. 2358–2365, 2008.
[115]
S. Y. Rha, E. Izbicka, R. Lawrence et al., “Effect of telomere and telomerase interactive agents on human tumor and normal cell lines,” Clinical Cancer Research, vol. 6, no. 3, pp. 987–993, 2000.
[116]
Z. Xiao, D. Shangguan, Z. Cao, X. Fang, and W. Tan, “Cell-specific internalization study of an aptamer from whole cell selection,” Chemistry, vol. 14, no. 6, pp. 1769–1775, 2008.
[117]
G. J. Tong, S. C. Hsiao, Z. M. Carrico, and M. B. Francis, “Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles,” Journal of the American Chemical Society, vol. 131, no. 31, pp. 11174–11178, 2009.
[118]
S. M. Taghdisi, K. Abnous, F. Mosaffa, and J. Behravan, “Targeted delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer,” Journal of Drug Targeting, vol. 18, no. 4, pp. 277–281, 2010.
[119]
R. J. Desnick and E. H. Schuchman, “Enzyme replacement and enhancement therapies: lessons from lysosomal disorders,” Nature Reviews Genetics, vol. 3, no. 12, pp. 954–966, 2002.
[120]
A. Dautry Varsat, A. Ciechanover, and H. F. Lodish, “pH and the recycling of transferrin during receptor-mediated endocytosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 8 I, pp. 2258–2262, 1983.
[121]
A. K. H. Cheng, H. Su, Y. A. Wang, and H. Z. Yu, “Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout,” Analytical Chemistry, vol. 81, no. 15, pp. 6130–6139, 2009.
[122]
M. A. Hollingsworth and B. J. Swanson, “Mucins in cancer: protection and control of the cell surface,” Nature Reviews Cancer, vol. 4, no. 1, pp. 45–60, 2004.
[123]
C. S. M. Ferreira, C. S. Matthews, and S. Missailidis, “DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers,” Tumor Biology, vol. 27, no. 6, pp. 289–301, 2006.
[124]
A. B. Singh and R. C. Harris, “Autocrine, paracrine and juxtacrine signaling by EGFR ligands,” Cellular Signalling, vol. 17, no. 10, pp. 1183–1193, 2005.
[125]
M. Ono and M. Kuwano, “Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs,” Clinical Cancer Research, vol. 12, no. 24, pp. 7242–7251, 2006.
[126]
S. Sigismund, E. Argenzio, D. Tosoni, E. Cavallaro, S. Polo, and P. P. Di Fiore, “Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation,” Developmental Cell, vol. 15, no. 2, pp. 209–219, 2008.
[127]
Z. Tang, D. Shangguan, K. Wang et al., “Selection of aptamers for molecular recognition and characterization of cancer cells,” Analytical Chemistry, vol. 79, no. 13, pp. 4900–4907, 2007.
[128]
P. Mallikaratchy, Z. Tang, S. Kwame, L. Meng, D. Shangguan, and W. Tan, “Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells,” Molecular & Cellular Proteomics, vol. 6, no. 12, pp. 2230–2238, 2007.
[129]
A. Heckel, M. C. R. Buff, M. S. L. Raddatz, et al., “An anticoagulant with light-triggered antidote activity,” Angewandte Chemie International Edition, vol. 45, no. 40, p. 6748, 2006.
[130]
A. Heckel and G. Mayer, “Light regulation of aptamer activity: an anti-thrombin aptamer with caged thymidine nucleobases,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 822–823, 2005.
[131]
H. Shi, X. X. He, K. M. Wang, et al., “Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, p. 3900, 2011.