Naturally occurring cellular RNAs contain an impressive number of chemically distinct modified residues which appear posttranscriptionally, as a result of specific action of the corresponding RNA modification enzymes. Over 100 different chemical modifications have been identified and characterized up to now. Identification of the chemical nature and exact position of these modifications is typically based on 2D-TLC analysis of nucleotide digests, on HPLC coupled with mass spectrometry, or on the use of primer extension by reverse transcriptase. However, many modified nucleotides are silent in reverse transcription, since the presence of additional chemical groups frequently does not change base-pairing properties. In this paper, we give a summary of various chemical approaches exploiting the specific reactivity of modified nucleotides in RNA for their detection. 1. Introduction Native cellular RNAs contain numerous modified residues resulting from specific action of various RNA modification enzymes. These RNA modifications are ubiquitous in nature, but the specific modification profile varies depending on the organism. Over 100 chemically distinct modified nucleotides have been identified so far mostly in tRNAs, rRNAs, snRNAs and some snoRNAs. From the chemical point of view, these modifications are highly diverse and almost any position of the nucleobases as well as the 2′-OH of the ribose has been found to be a target of modification enzymes (see Table 1 and below) [1–3]. Table 1: Known RNA modifications and their abbreviations and symbols (modified nucleosides mentioned in the text are indicated in bold). Identification of the chemical nature and localization of the modified nucleotides even in highly abundant RNAs represents a laborious and time-consuming task. Moreover, the analysis of low abundant cellular RNAs is extremely difficult due to limited access to highly purified RNA species required for most types of analysis, like HPLC or mass spectrometry [4–7]. One alternative to this consists in direct analysis of underrepresented RNA species in total cellular RNA by reverse transcription (RT) using specific DNA primers [8]. This generally allows the sequencing of a given RNA, but the information on its modified nucleotide content is still missing. The use of specific chemical reagents reviewed in this survey explores the particular reactivity of a given modified residue and may considerably help in the interpretation of an RT profile. Another area for the use of specific chemical reactions is RNA analysis and sequencing by various types of mass
References
[1]
H. Grosjean and R. Benne, Eds., Modification and Editing of RNA, ASM Press, Washington, DC, USA, 1998.
[2]
H. Grosjean, Ed., Fine-Tuning of RNA Functions by Modification and Editing, Springer, Berlin, Germany, 2005.
[3]
H. Grosjean, Ed., DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, Landes Bioscience, 2009.
[4]
S. Douthwaite and F. Kirpekar, “Identifying modifications in RNA by MALDI mass spectrometry,” Methods in Enzymology, vol. 425, pp. 1–20, 2007.
[5]
T. S. Rozhdestvensky, P. F. Crain, and J. Brosius, “Isolation and posttranscriptional modification analysis of native BC1 RNA from mouse brain,” RNA Biology, vol. 4, no. 1, pp. 11–15, 2007.
[6]
H. Oberacher, “Frontiers of mass spectrometry in nucleic acids analysis,” European Journal of Mass Spectrometry, vol. 16, no. 3, pp. 351–365, 2010.
[7]
S. Kellner, J. Burhenne, and M. Helm, “Detection of RNA modifications,” RNA Biology, vol. 7, no. 2, pp. 237–247, 2010.
[8]
Y. Motorin, S. Muller, I. Behm-Ansmant, and C. Branlant, “Identification of modified residues in RNAs by reverse transcription-based methods,” Methods in Enzymology, vol. 425, pp. 21–53, 2007.
[9]
M. Silberklang, A. M. Gillum, and U. L. RajBhandary, “Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs,” Methods in Enzymology, vol. 59, pp. 58–109, 1979.
[10]
H. Grosjean, G. Keith, and L. Droogmans, “Detection and quantification of modified nucleotides in RNA using thin-layer chromatography,” Methods in Molecular Biology, vol. 265, pp. 357–391, 2004.
[11]
Z. Meng and P. A. Limbach, “Mass spectrometry of RNA: linking the genome to the proteome,” Briefings in Functional Genomics and Proteomics, vol. 5, no. 1, pp. 87–95, 2006.
[12]
Q. Dai, R. Fong, M. Saikia et al., “Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N-methyladenosine,” Nucleic Acids Research, vol. 35, no. 18, pp. 6322–6329, 2007.
[13]
A. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 2, pp. 560–564, 1977.
[14]
D. A. Peattie, “Direct chemical method for sequencing RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 4, pp. 1760–1764, 1979.
[15]
D. A. Peattie and W. Gilbert, “Chemical probes for higher-order structure in RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 8, pp. 4679–4682, 1980.
[16]
W. Wintermeyer and H. G. Zachau, “A specific chemical chain scission of tRNA at 7-methylguanosine,” FEBS Letters, vol. 11, no. 3, pp. 160–164, 1970.
[17]
R. Thiebe and H. G. Zachau, “A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid,” European Journal of Biochemistry, vol. 5, no. 4, pp. 546–555, 1968.
[18]
B. Singer, “All oxygens in nucleic acids react with carcinogenic ethylating agents,” Nature, vol. 264, no. 5584, pp. 333–339, 1976.
[19]
S. A. Mortimer, J. S. Johnson, and K. M. Weeks, “Quantitative analysis of RNA solvent accessibility by N-silylation of guanosine,” Biochemistry, vol. 48, no. 10, pp. 2109–2114, 2009.
[20]
W. J. Krzyzosiak, J. Biernat, J. Ciesio?ka, K. Gulewicz, and M. Wiewiórowski, “The reaction of adenine and cytosine residues in tRNA with chloroacetaldehyde,” Nucleic Acids Research, vol. 9, no. 12, pp. 2841–2851, 1981.
[21]
J. Biernat, J. Ciesiolka, and P. Gornicki, “New observations concerning the chloroacetaldehyde reaction with some tRNA constituents. Stable intermediates, kinetics and selectivity of the reaction,” Nucleic Acids Research, vol. 5, no. 3, pp. 789–804, 1978.
[22]
P. Roques, F. Thome, and M. Olomucki, “Reaction of nucleic acid bases with α-acetylenic esters. Part IV. Preparation of an alkylating derivative of tRNA(Phe) by conformation-specific chemical modification,” Biochimica et Biophysica Acta, vol. 951, no. 1, pp. 71–77, 1988.
[23]
K. Nakaya, O. Takenaka, H. Horinishi, and K. Shibata, “Reactions of glyoxal with nucleic acids, nucleotides and their component bases,” Biochimica et Biophysica Acta, vol. 161, no. 1, pp. 23–31, 1968.
[24]
H. F. Noller and J. B. Chaires, “Functional modification of 16S ribosomal RNA by kethoxal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 11, pp. 3113–3118, 1972.
[25]
T. Pieler, A. Schreiber, and V. A. Erdmann, “Comparative structural analysis of eubacterial 5S rRNA by oxidation of adenines in the N-1 position,” Nucleic Acids Research, vol. 12, no. 7, pp. 3115–3126, 1984.
[26]
A. Okamoto, “Chemical approach toward efficient DNA methylation analysis,” Organic and Biomolecular Chemistry, vol. 7, no. 1, pp. 21–26, 2009.
[27]
I. Shcherbakova, S. Mitra, R. H. Beer, and M. Brenowitz, “Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins,” Nucleic Acids Research, vol. 34, no. 6, article no. e48, 2006.
[28]
G. J. Murakawa, C. H. B. Chen, M. D. Kuwabara, D. P. Nierlich, and D. S. Sigman, “Scission of RNA by the chemical nuclease of 1,10-phenanthroline-copper ion: preference for single-stranded loops,” Nucleic Acids Research, vol. 17, no. 13, pp. 5361–5375, 1989.
[29]
Y. H. Wang, S. R. Sczekan, and E. C. Theil, “Structure of the 5' untranslated regulatory region of ferritin mRNA studied in solution,” Nucleic Acids Research, vol. 18, no. 15, pp. 4463–4468, 1990.
[30]
M. G?tte, R. Marquet, C. Isel et al., “Probing the higher order structure of RNA with peroxonitrous acid,” FEBS Letters, vol. 390, no. 2, pp. 226–228, 1996.
[31]
Y. Kuchino, F. Mori, and H. Kasai, “Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues,” Nature, vol. 326, no. 6117, pp. 77–79, 1987.
[32]
D. Rhodes, “Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification,” Journal of Molecular Biology, vol. 94, no. 3, pp. 449–460, 1975.
[33]
K. Negishi, F. Harada, S. Nishimura, and H. Hayatsu, “A rapid cytosine-specific modification of E. coli tRNA (Leu) by semicarbazide-bisulfite, a probe for polynucleotide conformations,” Nucleic Acids Research, vol. 4, no. 7, pp. 2283–2292, 1977.
[34]
M. Münzel, L. Lercher, M. Müller, and T. Carell, “Chemical discrimination between dC and 5MedC via their hydroxylamine adducts,” Nucleic Acids Research, vol. 38, no. 21, article e192, 2010.
[35]
S. J. Clark, J. Harrison, C. L. Paul, and M. Frommer, “High sensitivity mapping of methylated cytosines,” Nucleic Acids Research, vol. 22, no. 15, pp. 2990–2997, 1994.
[36]
W. Gu, R. L. Hurto, A. K. Hopper, E. J. Grayhack, and E. M. Phizicky, “Depletion of Saccharomyces cerevisiae?? guanylyltransferase Thg1p leads to uncharged with additional m5C,” Molecular and Cellular Biology, vol. 25, no. 18, pp. 8191–8201, 2005.
[37]
M. Schaefer, T. Pollex, K. Hanna, and F. Lyko, “RNA cytosine methylation analysis by bisulfite sequencing,” Nucleic Acids Research, vol. 37, no. 2, article no. e12, 2009.
[38]
I. L. Batey and D. M. Brown, “Chemical studies of the tertiary structure of transfer RNA. Iodination of exposed cytosine residues with I,” Biochimica et Biophysica Acta, vol. 474, no. 3, pp. 378–385, 1977.
[39]
J. L. Duh, R. R. Punzalan, and R. C. Pless, “Reactivity of pyrimidine nucleosides under the conditions of the pyrimidine sequencing reactions of Maxam and Gilbert,” Analytical Biochemistry, vol. 168, no. 2, pp. 231–238, 1988.
[40]
H. Hayatsu, “Reaction of cytidine with semicarbazide in the presence of bisulfite. A rapid modification specific for single-stranded polynucleotide,” Biochemistry, vol. 15, no. 12, pp. 2677–2682, 1976.
[41]
K. Miura, T. Iwano, S. Tsuda, T. Ueda, F. Harada, and N. Kato, “Chemical modification of cytosine residues of tRNAVa1 with hydrogen sulfide (nucleosides and nucleotides. XL),” Chemical and Pharmaceutical Bulletin, vol. 30, no. 11, pp. 4126–4133, 1982.
[42]
N. Riehl, P. Carbon, B. Ehresmann, and J. P. Ebel, “Chemical conversion of cytidine residues into 4-thiouridines in yeast tRNAPhe. Determination of the modified cytidines,” Nucleic Acids Research, vol. 12, no. 11, pp. 4445–4453, 1984.
[43]
A. E. Johnson, H. J. Adkins, E. A. Matthews, and C. R. Cantor, “Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome,” Journal of Molecular Biology, vol. 156, no. 1, pp. 113–140, 1982.
[44]
B. S. Watson, T. L. Hazlett, J. F. Eccleston, C. Davis, D. M. Jameson, and A. E. Johnson, “Macromolecular arrangement in the aminoacyl-tRNA·elongation factor Tu·GTP ternary complex. A fluorescence energy transfer study,” Biochemistry, vol. 34, no. 24, pp. 7904–7912, 1995.
[45]
P. Górnicki, M. Judek, A. Wolański, and W. J. Krzyzosiak, “Hypermodified nucleoside carboxyl group as a target site for specific tRNA modification,” European Journal of Biochemistry, vol. 155, no. 2, pp. 371–375, 1986.
[46]
J. Podkowinski, T. Dymarek-Babs, and P. Gornicki, “Modified tRNAs for probing tRNA binding sites on the ribosome,” Acta Biochimica Polonica, vol. 36, no. 3-4, pp. 235–244, 1989.
[47]
M. Schaefer, S. Hagemann, K. Hanna, and F. Lyko, “Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines,” Cancer Research, vol. 69, no. 20, pp. 8127–8132, 2009.
[48]
Y. Motorin, F. Lyko, and M. Helm, “5-methylcytosine in RNA: detection, enzymatic formation and biological functions,” Nucleic Acids Research, vol. 38, no. 5, Article ID gkp1117, pp. 1415–1430, 2009.
[49]
E. Fritzsche, H. Hayatsu, G. L. Igloi, S. Iida, and H. K?ssel, “The use of permanganate as a sequencing reagent for identification of 5-methylcytosine residues in DNA,” Nucleic Acids Research, vol. 15, no. 14, pp. 5517–5528, 1987.
[50]
C. T. Bui, K. Rees, and R. G. H. Cotton, “Permanganate oxidation reactions of DNA: perspective in biological studies,” Nucleosides, Nucleotides and Nucleic Acids, vol. 22, no. 9, pp. 1835–1855, 2003.
[51]
K. Tanaka, K. Tainaka, T. Kamei, and A. Okamoto, “Direct labeling of 5-methylcytosine and its applications,” Journal of the American Chemical Society, vol. 129, no. 17, pp. 5612–5620, 2007.
[52]
K. Tanaka, K. Tainaka, and A. Okamoto, “Methylcytosine-selective fluorescence quenching by osmium complexation,” Bioorganic and Medicinal Chemistry, vol. 15, no. 4, pp. 1615–1621, 2007.
[53]
K. Tanaka, K. Tainaka, T. Umemoto, A. Nomura, and A. Okamoto, “An osmium-DNA interstrand complex: application to facile DNA methylation analysis,” Journal of the American Chemical Society, vol. 129, no. 46, pp. 14511–14517, 2007.
[54]
W. Wintermeyer and H. G. Zachau, “Tertiary structure interactions of 7 methylguanosine in yeast tRNA(Phe) as studied by borohydride reduction,” FEBS Letters, vol. 58, no. 1, pp. 306–309, 1975.
[55]
B. E. H. Maden, M. E. Corbett, P. A. Heeney, K. Pugh, and P. M. Ajuh, “Classical and novel approaches to the defection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA,” Biochimie, vol. 77, no. 1-2, pp. 22–29, 1995.
[56]
B. E. H. Maden, “Mapping 2'-O-methyl groups in ribosomal RNA,” Methods, vol. 25, no. 3, pp. 374–382, 2001.
[57]
Y. T. Yu, M. D. Shu, and J. A. Steitz, “A new method for detecting sites of 2'-O-methylation in RNA molecules,” RNA, vol. 3, no. 3, pp. 324–331, 1997.
[58]
B. Yu, Z. Yang, J. Li et al., “Methylation as a crucial step in plant microRNA biogenesis,” Science, vol. 307, no. 5711, pp. 932–935, 2005.
[59]
B. Yu, E. J. Chapman, Z. Yang, J. C. Carrington, and X. Chen, “Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in Arabidopsis,” FEBS Letters, vol. 580, no. 13, pp. 3117–3120, 2006.
[60]
S. Alefelder, B. K. Patel, and F. Eckstein, “Incorporation of terminal phosphorothioates into oligonucleotides,” Nucleic Acids Research, vol. 26, no. 21, pp. 4983–4988, 1998.
[61]
E. J. Merino, K. A. Wilkinson, J. L. Coughlan, and K. M. Weeks, “RNA structure analysis at single nucleotide resolution by Selective 2'-Hydroxyl Acylation and Primer Extension (SHAPE),” Journal of the American Chemical Society, vol. 127, no. 12, pp. 4223–4231, 2005.
[62]
K. A. Wilkinson, E. J. Merino, and K. M. Weeks, “Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution,” Nature Protocols, vol. 1, no. 3, pp. 1610–1616, 2006.
[63]
R. P. Singhal, R. K. Bajaj, and C. M. Buess, “Reversed-phase boronate chromatography for the separation of O-methylribose nucleosides and aminoacyl-tRNAs,” Analytical Biochemistry, vol. 109, no. 1, pp. 1–11, 1980.
[64]
G. L. Igloi and H. K?ssel, “Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid,” Nucleic Acids Research, vol. 13, no. 19, pp. 6881–6898, 1985.
[65]
A. Durairaj and P. A. Limbach, “Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products,” Rapid Communications in Mass Spectrometry, vol. 22, no. 23, pp. 3727–3734, 2008.
[66]
A. Durairaj and P. A. Limbach, “Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids,” Analytica Chimica Acta, vol. 623, no. 2, pp. 117–125, 2008.
[67]
A. Durairaj and P. A. Limbach, “Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection,” Analytica Chimica Acta, vol. 612, no. 2, pp. 173–181, 2008.
[68]
J. Mengel-J?rgensen and F. Kirpekar, “Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry,” Nucleic Acids Research, vol. 30, no. 23, article e135, 2002.
[69]
G. Emmerechts, P. Herdewijn, and J. Rozenski, “Pseudouridine detection improvement by derivatization with methyl vinyl sulfone and capillary HPLC-mass spectrometry,” Journal of Chromatography B, vol. 825, no. 2, pp. 233–238, 2005.
[70]
M. Sakurai, T. Yano, H. Kawabata, H. Ueda, and T. Suzuki, “Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome,” Nature Chemical Biology, vol. 6, no. 10, pp. 733–740, 2010.
[71]
T. Mizutani, “Chemical modification of pseudouridylic acid in valine transfer ribonucleic acid I from Torulopsis utilis with a radioactive carbodiimide,” Journal of Biochemistry, vol. 71, no. 4, pp. 589–595, 1972.
[72]
T. Mizutani, “Chemical modification of pseudouridylic acid in isoeleucine transfer ribonucleic acid from Torulopsis utilis with a radioactive carbodiimide,” Journal of Biochemistry, vol. 71, no. 3, pp. 567–569, 1972.
[73]
N. W. Y. Ho and P. T. Gilham, “Reaction of pseudouridine and inosine with N-cyclohexyl-N'-β-(4-methylmorpholinium) ethylcarbodiimide,” Biochemistry, vol. 10, no. 20, pp. 3651–3657, 1971.
[74]
K. G. Patteson, L. P. Rodicio, and P. A. Limbach, “Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry,” Nucleic acids research, vol. 29, no. 10, p. E49, 2001.
[75]
A. Bakin and J. Ofengand, “Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique,” Biochemistry, vol. 32, no. 37, pp. 9754–9762, 1993.
[76]
A. Bakin and J. Ofengand, “Mapping of pseudouridine residues in RNA to nucleotide resolution,” in Protein Synthesis: Methods and Protocols, R. Martin, Ed., vol. 77, pp. 297–309, Springer, Berlin, Germany, 1998.
[77]
S. Massenet, Y. Motorin, D. L. J. Lafontaine, E. C. Hurt, H. Grosjean, and C. Branlant, “Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase Pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 2142–2154, 1999.
[78]
M. Caron and H. Dugas, “Specific spin labeling of transfer ribonucleic acid molecules,” Nucleic Acids Research, vol. 3, no. 1, pp. 19–34, 1976.
[79]
G. L. Igloi, “Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis,” Biochemistry, vol. 27, no. 10, pp. 3842–3849, 1988.
[80]
S. Friedman, H. J. Li, K. Nakanishi, and G. Van Lear, “3-(3-Amino-3-carboxy-n-propyl)uridine. the structure of the nucleoside in Escherichia coli transfer ribonucleic acid that reacts with phenoxyacetoxysuccinimide,” Biochemistry, vol. 13, no. 14, pp. 2932–2937, 1974.
[81]
J. A. Plumbridge, H. G. Baumert, M. Ehrenberg, and R. Rigler, “Characterisation of a new, fully active fluorescent derivative of E. coli tRNA Phe,” Nucleic Acids Research, vol. 8, no. 4, pp. 827–843, 1980.
[82]
A. Pingoud, R. Kownatzki, and G. Maass, “Fluoresceinylthiocarbamyl tRNA(Tyr): a useful derivative of tRNA(Tyr) (E. coli) for physicochemical studies,” Nucleic Acids Research, vol. 4, no. 2, pp. 327–338, 1977.
[83]
H. Kasai, N. Shindo-Okada, S. Noguchi, and S. Nishimura, “Specific fluorescent labelling of 7-(aminomethyl)-7-deazaguanosine located in the anticodon of tRNA(Tyr) isolated from E. coli mutant,” Nucleic Acids Research, vol. 7, no. 1, pp. 231–238, 1979.
[84]
P. Cerutti and N. Miller, “Selective reduction of yeast transfer ribonucleic acid with sodium borohydride,” Journal of Molecular Biology, vol. 26, no. 1, pp. 55–66, 1967.
[85]
T. Igo-Kemenes and H. G. Zachau, “On the specificity of the reduction of transfer ribonucleic acids with sodium borohydride,” European Journal of Biochemistry, vol. 10, no. 3, pp. 549–556, 1969.
[86]
W. Wintermeyer, H. G. Schleich, and H. G. Zachau, “Incorporation of amines or hydrazines into tRNA replacing wybutine or dihydrouracil,” Methods in Enzymology, vol. 59, pp. 110–121, 1979.
[87]
F. Xing, S. L. Hiley, T. R. Hughes, and E. M. Phizicky, “The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17850–17860, 2004.
[88]
C. H. House and S. L. Miller, “Hydrolysis of dihydrouridine and related compounds,” Biochemistry, vol. 35, no. 1, pp. 315–320, 1996.
[89]
B. L. Bass, “An I for editing,” Current Biology, vol. 5, no. 6, pp. 598–600, 1995.
[90]
S. Maas, A. Rich, and K. Nishikura, “A-to-I RNA editing: recent news and residual mysteries,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1391–1394, 2003.
[91]
D. P. Morse and B. L. Bass, “Detection of inosine in messenger RNA by inosine-specific cleavage,” Biochemistry, vol. 36, no. 28, pp. 8429–8434, 1997.
[92]
G. Vogeli, T. S. Stewart, T. McCutchan, and D. Soll, “Isolation of Escherichia coli precursor tRNAs containing modified nucleoside Q,” Journal of Biological Chemistry, vol. 252, no. 7, pp. 2311–2318, 1977.
[93]
J. E. Ladner and M. P. Schweizer, “Effects of dilute HCl on yeast tRNAPhe and E. coli tRNA1fMet,” Nucleic Acids Research, vol. 1, no. 2, pp. 183–192, 1974.
[94]
H. G. Schleich, W. Wintermeyer, and H. G. Zachau, “Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNA(Phe),” Nucleic Acids Research, vol. 5, no. 5, pp. 1701–1713, 1978.
[95]
L. Saccomanno and B. L. Bass, “A minor fraction of basic fibroblast growth factor mRNA is deaminated in Xenopus stage VI and matured oocytes,” RNA, vol. 5, no. 1, pp. 39–48, 1999.