For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules. 1. Introduction Site-specific labeling and modification of large RNA molecules provide a wide variety of applications in many areas, such as biochemical and biophysical studies, synthetic biology, in vitro evolution, generation of functional nucleic acids, and construction of nanomaterials and biosensors. The site-specific incorporation of functional nucleotide analogs into RNA molecules is performed by chemical synthesis, posttranscriptional modification, and enzymatic incorporation of nucleotide analogs as substrates. Among them, chemical synthesis is a commonly employed method. However, it is only capable of synthesizing small RNA molecules. Other site-specific modifications of RNA, by posttranscriptional modification [1, 2] and enzymatic incorporation using cap or triphosphate analogs [3–6], are limited to terminal modifications of RNA. In contrast to these RNA labeling methods, introducing an artificial, extra base pair (unnatural base pair), as a third base pair, to in vitro transcription systems allows the site-specific incorporation of an unnatural base linked with functional groups into desired positions of RNA during transcription mediated by the unnatural base pair. Thus, several unnatural base pairs that function in polymerase reactions have rapidly been developed for site-specific labeling of RNA molecules [7–18]. Here, for the site-specific incorporation of functional components into large RNA molecules, we report a fusion PCR and transcription system that employs two unnatural base pairs
References
[1]
P. Z. Qin and A. M. Pyle, “Site-specific labeling of RNA with fluorophores and other structural probes,” Methods, vol. 18, no. 1, pp. 60–70, 1999.
[2]
D. Chatterji and V. Gopal, “Fluorescence spectroscopy analysis of active and regulatory sites of RNA polymerase,” Methods in Enzymology, vol. 274, pp. 456–478, 1996.
[3]
F. Huang, G. Wang, T. Coleman, and N. Li, “Synthesis of adenosine derivatives as transcription initiators and preparation of 5′ fluorescein- and biotin-labeled RNA through one-step in vitro transcription,” RNA, vol. 9, no. 12, pp. 1562–1570, 2003.
[4]
A. Draganescu, S. C. Hodawadekar, K. R. Gee, and C. Brenner, “Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4555–4560, 2000.
[5]
S. Seetharaman, M. Zivarts, N. Sudarsan, and R. R. Breaker, “Immobilized RNA switches for the analysis of complex chemical and biological mixtures,” Nature Biotechnology, vol. 19, no. 4, pp. 336–341, 2001.
[6]
L. Zhang, L. Sun, Z. Cui, R. L. Gottlieb, and B. Zhang, “5′-sulfhydryl-modified RNA: initiator synthesis, in vitro transcription, and enzymatic incorporation,” Bioconjugate Chemistry, vol. 12, no. 6, pp. 939–948, 2001.
[7]
Y. Tor and P. B. Dervan, “Site-specific enzymatic incorporation of an unnatural base, N6-(6-ammohexyl)isoguanosine, into RNA,” Journal of the American Chemical Society, vol. 115, no. 11, pp. 4461–4467, 1993.
[8]
I. Hirao, T. Ohtsuki, T. Fujiwara et al., “An unnatural base pair for incorporating amino acid analogs into proteins,” Nature Biotechnology, vol. 20, no. 2, pp. 177–182, 2002.
[9]
M. Kimoto, M. Endo, T. Mitsui, T. Okuni, I. Hirao, and S. Yokoyama, “Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs,” Chemistry and Biology, vol. 11, no. 1, pp. 47–55, 2004.
[10]
R. Kawai, M. Kimoto, S. Ikeda et al., “Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs,” Journal of the American Chemical Society, vol. 127, no. 49, pp. 17286–17295, 2005.
[11]
K. Moriyama, M. Kimoto, T. Mitsui, S. Yokoyama, and I. Hirao, “Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs,” Nucleic Acids Research, vol. 33, no. 15, article e129, 2005.
[12]
M. Kimoto, T. Mitsui, Y. Harada, A. Sato, S. Yokoyama, and I. Hirao, “Fluorescent probing for RNA molecules by an unnatural base-pair system,” Nucleic Acids Research, vol. 35, no. 16, pp. 5360–5369, 2007.
[13]
Y. Hikida, M. Kimoto, S. Yokoyama, and I. Hirao, “Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis,” Nature Protocols, vol. 5, no. 7, pp. 1312–1323, 2010.
[14]
D. A. Malyshev, J. S. Young, P. Ordoukhanian, and F. E. Romesberg, “PCR with an expanded genetic alphabet,” Journal of the American Chemical Society, vol. 131, no. 41, pp. 14620–14621, 2009.
[15]
Y. J. Seo, S. Matsuda, and F. E. Romesberg, “Transcription of an expanded genetic alphabet,” Journal of the American Chemical Society, vol. 131, no. 14, pp. 5046–5047, 2009.
[16]
Y. J. Seo, D. A. Malyshev, T. Lavergne, P. Ordoukhanian, and F. E. Romesberg, “Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs,” Journal of the American Chemical Society, vol. 133, no. 49, pp. 19878–19888, 2011.
[17]
I. Hirao, M. Kimoto, T. Mitsui et al., “An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA,” Nature Methods, vol. 3, no. 9, pp. 729–735, 2006.
[18]
M. Morohashi, M. Kimoto, A. Sato, R. Kawai, and I. Hirao, “Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system,” Molecules, vol. 17, no. 3, pp. 2855–2876, 2012.
[19]
M. Kimoto, R. Kawai, T. Mitsui, S. Yokoyama, and I. Hirao, “An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules,” Nucleic Acids Research, vol. 37, no. 2, article e14, 2009.
[20]
R. Yamashige, M. Kimoto, Y. Takezawa, et al., “Highly specific unnatural base pair systems as a third base pair for PCR amplification,” Nucleic Acids Research, vol. 40, no. 6, pp. 2793–2806, 2012.
[21]
E. Burke and S. Barik, “Megaprimer PCR: application in mutagenesis and gene fusion,” Methods in Molecular Biology, vol. 226, pp. 525–532, 2003.