全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Convenient and Scalable Synthesis of Fmoc-Protected Peptide Nucleic Acid Backbone

DOI: 10.1155/2012/354549

Full-Text   Cite this paper   Add to My Lib

Abstract:

The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50?g of Boc anhydride to give 31?g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA. 1. Introduction Peptide nucleic acid (PNA) [1] has recently emerged as a promising alternative to the native nucleic acids DNA and RNA (Figure 1) for a wide variety of applications including antisense therapy [2] and gene diagnostics [3]. The key advantages of PNA over DNA and RNA are its resistance to degradation by cellular nucleases [4] and its relatively higher binding affinity and mismatch selectivity in duplex formation [5]. PNA can be generated by Fmoc- or Boc-solid phase peptide synthesis [6], and Fmoc-protected monomers bearing each of the four canonical nucleobases are commercially available. Recently, the incorporation of modified nucleobases into PNA has been shown to enable synthesis of nucleic acids having unique physicochemical properties [7]. However, PNA monomers bearing modified nucleobases are not commercially available, and must instead be synthesized in the laboratory. Suitable reactions have been reported for preparation of modified nucleobases and coupling of these nucleobase acetic acids to the PNA backbone (Figure 2) [7–9]. However, to our knowledge, a scalable and cost-effective synthesis for the protected N-[2-(Fmoc)aminoethyl]glycine benzyl ester (Fmoc-AEG-OBn) backbone 1 has yet to be reported. Synthesis of the Fmoc-protected carboxylic acid backbone Fmoc-AEG-OH has been reported [10], and coupling of nucleobase acetic acids with Fmoc-AEG-OH has been described in the patent literature [11]. However, this coupling reaction provides moderate-to-low yields of PNA monomer [12, 13]. Here, we describe a synthesis of 1 that proceeds in four steps with an overall yield of 32%, utilizes inexpensive reagents, and can be scaled to produce large quantities of final product in a single batch with only minimal purification. Figure 1: Chemical structure of DNA, RNA, and PNA. Figure 2: Synthesis of Fmoc-protected PNA monomers. 2. Materials and Methods 2.1. General Methods Unless otherwise noted, all starting materials were

References

[1]  P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, “Sequence-selective recognition of DNA by strand displacement with thymine-substituted polyamide,” Science, vol. 254, no. 5037, pp. 1497–1500, 1991.
[2]  L. Good and P. E. Nielsen, “Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA,” Nature Biotechnology, vol. 16, no. 4, pp. 355–358, 1998.
[3]  P. E. Nielsen, “Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology,” Current Opinion in Biotechnology, vol. 12, no. 1, pp. 16–20, 2001.
[4]  C. Gambacorti-Passerini, L. Mologni, C. Bertazzoli et al., “In vitro transcription and translation inhibition by anti-promyelocytic leukemia (PML)/retinoic acid receptor α and anti-PML peptide nucleic acid,” Blood, vol. 88, no. 4, pp. 1411–1417, 1996.
[5]  M. Egholm, O. Buchardt, L. Christensen et al., “PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules,” Nature, vol. 365, no. 6446, pp. 566–568, 1993.
[6]  D. A. Braasch, C. J. Nulf, and D. A. Corey, “Synthesis and purification of peptide nucleic acids,” in Current Protocols in Nucleic Acid Chemistry, chapter 4, pp. 4.11.1–4.11.18, 2002.
[7]  F. Wojciechowski and R. H. E. Hudson, “Nucleobase modifications in peptide nucleic acids,” Current Topics in Medicinal Chemistry, vol. 7, no. 7, pp. 667–679, 2007.
[8]  F. Wojciechowski and R. H. E. Hudson, “A convenient route to N-[2-(Fmoc)aminoethyl]glycine esters and PNA oligomerization using a Bis-N-Boc nucleobase protecting group strategy,” Journal of Organic Chemistry, vol. 73, no. 10, pp. 3807–3816.
[9]  A. Porcheddu, G. Giacomelli, I. Piredda, M. Carta, and G. Nieddu, “A practical and efficient approach to PNA monomers compatible with Fmoc-mediated solid-phase synthesis protocols,” European Journal of Organic Chemistry, no. 34, pp. 5786–5797, 2008.
[10]  E. Lioy, J. Suarez, F. Guzmàn, S. Siegrist, G. Pluschke, and M. E. Patarroyo, “Synthesis, biological, and immunological properties of cyclic peptides from Plasmodium falciparum merozoite surface protein-1,” Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2631–2635, 2001.
[11]  J. M. Coull, M. Egholm, R. P. Hodge, M. Ismail, and S. B. Rajur, “Synthons for the synthesis and deprotection of peptide nucleic acids under mild conditions,” U.S. Patent 6, 172, 226, 2001.
[12]  F. Debaene, J. A. Da Silva, Z. Pianowski, F. J. Duran, and N. Winssinger, “Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases,” Tetrahedron, vol. 63, no. 28, pp. 6577–6586, 2007.
[13]  F. Altenbrunn and O. Seitz, “O-Allyl protection in the Fmoc-based synthesis of difficult PNA,” Organic & Biomolecular Chemistry, vol. 6, no. 14, pp. 2493–2498, 2008.
[14]  S. A. Thomson, J. A. Josey, R. Cadilla et al., “Fmoc mediated synthesis of peptide nucleic acids,” Tetrahedron, vol. 51, no. 22, pp. 6179–6194, 1995.
[15]  R. W. Hay, A. K. Basak, and M. P. Pujari, “Kinetics and mechanism of the copper(II) promoted hydrolysis of the methyl ester of ethylenediaminemonoacetate,” Transition Metal Chemistry, vol. 11, no. 1, pp. 27–30, 1986.
[16]  P. Kocis, O. Issakova, N. F. Sepetov, and M. Lebl, “Kemp's triacid scaffolding for synthesis of combinatorial nonpeptide uncoded libraries,” Tetrahedron Letters, vol. 36, no. 37, pp. 6623–6626, 1995.
[17]  P. Xu, T. Zhang, W. Wang, X. Zou, X. Zhang, and Y. Fu, “Synthesis of PNA monomers and dimers by Ugi four-component reaction,” Synthesis, no. 8, pp. 1171–1176, 2003.
[18]  The free base of 1 is stable for several days at ?20°C, and can be easily converted to the HCl salt if long-term storage is desired.
[19]  L. D. Fader, M. Boyd, and Y. S. Tsantrizos, “Backbone modifications of aromatic peptide nucleic acid (APNA) monomers and their hybridization properties with DNA and RNA,” Journal of Organic Chemistry, vol. 66, no. 10, pp. 3372–3379, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133