The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, , - antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. , - was directly compared to its conventional bridged (or locked) nucleic acid ( , -BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between , - -based antisense oligonucleotides and the target mRNA surpassed those of 2′,4′-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length , -BNA/LNA-based counterpart, the corresponding , - -based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2′,4′-BNANC-based 20-mer AON exhibited the highest affinity but the worst value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that , - may be a better alternative to conventional , -BNA/LNA, even for “short” antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production. 1. Introduction Recently designed and synthesized high-performance modified-nucleic-acids (HiPerNAs) such as 2′-O-methyl RNA (2′-OMe), 2′-O-methoxyethyl RNA (MOE), and 2′,4′-bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) have improved performance compared to phosphorothioate antisense oligonucleotides (AONs). HiPerNAs overcome the systemic antisense effects of these earlier antisense oligonucleotides and show promise as antisense therapeutics for the treatment of a variety of diseases [1–5]. However, more potent and less toxic AONs are required, since several clinical trials of AON drugs carrying HiPerNAs have been recently terminated due to the lack of efficacy or because of safety concerns. In addition, toxicity and delivery problems remain [6–8]. We previously described a unique modified nucleic acid, 2′,4′-bridged nucleic acid (2′,4′-BNA; also known as LNA) [9, 10]. Its high therapeutic efficacy is based on the extraordinarily high target binding of the original 2′,4′-BNA/LNA-based AON. 2′,4′-BNA/LNA-based AON is widely accepted as one of the most promising antisense drugs,
References
[1]
E. R. Rayburn and R. Zhang, “Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible?” Drug Discovery Today, vol. 13, no. 11-12, pp. 513–521, 2008.
[2]
T. Yamamoto, M. Nakatani, K. Narukawa, and S. Obika, “Antisense drug discovery and development,” Future Medicinal Chemistry, vol. 3, no. 3, pp. 339–365, 2011.
[3]
F. Akdim, M. E. Visser, D. L. Tribble et al., “Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia,” American Journal of Cardiology, vol. 105, no. 10, pp. 1413–1419, 2010.
[4]
M. E. Visser, J. J. P. Kastelein, and E. S. G. Stroes, “Apolipoprotein B synthesis inhibition: results from clinical trials,” Current Opinion in Lipidology, vol. 21, no. 4, pp. 319–323, 2010.
[5]
T. S. Crooke, Antisense Drug Technologies: Principles, Strategies, and Applications, CRC Press, 2007.
[6]
E. E. Swayze, A. M. Siwkowski, E. V. Wancewicz et al., “Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals,” Nucleic Acids Research, vol. 35, no. 2, pp. 687–700, 2007.
[7]
M. H. -S. Tsuyoshi Yamamoto, M. Nakatani, S. Wada, et al., “Cholesterol-lowering action of BNA-based antisense oligonucleotides targeting PCSK9 in atherogenic diet-induced hypercholesterolemic mice,” Molecular Therapy-Nucleic Acids, vol. 1, article e22, 2012.
[8]
P. J. White, F. Anastasopoulos, C. W. Pouton, and B. J. Boyd, “Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides,” Expert reviews in molecular medicine, vol. 11, article e10, 2009.
[9]
S. Obika, S. M. A. Rahman, A. Fujisaka, Y. Kawada, T. Baba, and T. Imanishi, “Bridged nucleic acids: development, synthesis and properties,” Heterocycles, vol. 81, no. 6, pp. 1347–1392, 2010.
[10]
T. Imanishi and S. Obika, “BNAs: novel nucleic acid analogs with a bridged sugar moiety,” Chemical Communications, no. 16, pp. 1653–1659, 2002.
[11]
T. P. Prakash, A. Siwkowski, C. R. Allerson et al., “Antisense oligonucleotides containing conformational constrained -(N-Methoxy)aminomethylene and - aminooxymethylene and -O, -C-aminomethylene bridged nucleoside analogues show improved potency in animal models,” Journal of Medicinal Chemistry, vol. 53, no. 4, pp. 1636–1650, 2010.
[12]
P. P. Seth, C. R. Allerson, A. Berdeja et al., “An exocyclic methylene group acts as a bioisostere of the -oxygen atom in lna,” Journal of the American Chemical Society, vol. 132, no. 42, pp. 14942–14950, 2010.
[13]
P. P. Seth, A. Siwkowski, C. R. Allerson et al., “Short antisense oligonucleotides with novel conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals,” Journal of Medicinal Chemistry, vol. 52, no. 1, pp. 10–13, 2009.
[14]
P. P. Seth, G. Vasquez, C. A. Allerson et al., “Synthesis and biophysical evaluation of -constrained O-methoxyethyl and -constrained O-ethyl nucleic acid analogues,” Journal of Organic Chemistry, vol. 75, no. 5, pp. 1569–1581, 2010.
[15]
Y. Mitsuoka, T. Kodama, R. Ohnishi, Y. Hari, T. Imanishi, and S. Obika, “A bridged nucleic acid, -BNACOC: synthesis of fully modified oligonucleotides bearing thymine, 5-methylcytosine, adenine and guanine -BNACOC monomers and RNA-selective nucleic-acid recognition,” Nucleic Acids Research, vol. 37, no. 4, pp. 1225–1238, 2009.
[16]
K. Miyashita, S. M. A. Rahman, S. Seki, S. Obika, and T. Imanishi, “N-Methyl substituted -BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization,” Chemical Communications, no. 36, pp. 3765–3767, 2007.
[17]
S. M. A. Rahman, S. Seki, S. Obika, H. Yoshikawa, K. Miyashita, and T. Imanishi, “Design, synthesis, and properties of -BNANC: a bridged nucleic acid analogue,” Journal of the American Chemical Society, vol. 130, no. 14, pp. 4886–4896, 2008.
[18]
S. K. Singh, R. Kumar, and J. Wengel, “Synthesis of -amino-LNA: a novel conformationally restricted high-affinity oligonucleotide analogue with a handle,” Journal of Organic Chemistry, vol. 63, no. 26, pp. 10035–10039, 1998.
[19]
D. Honcharenko, O. P. Varghese, O. Plashkevych, J. Barman, and J. Chattopadhyaya, “Synthesis and structure of novel conformationally constrained -azetidine-fused bicyclic pyrimidine nucleosides: their incorporation into oligo-DNAs and thermal stability of the heteroduplexes,” Journal of Organic Chemistry, vol. 71, no. 1, pp. 299–314, 2006.
[20]
E. M. Straarup, N. Fisker, M. Hedtj?rn et al., “Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates,” Nucleic Acids Research, vol. 38, no. 20, pp. 7100–7111, 2010.
[21]
A. A. Levin, “A review of issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides,” Biochimica et Biophysica Acta, vol. 1489, no. 1, pp. 69–84, 1999.
[22]
T. A. Watanabe, R. S. Geary, and A. A. Levin, “Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302),” Oligonucleotides, vol. 16, no. 2, pp. 169–180, 2006.
[23]
W. Y. Gao, F. S. Han, C. Storm, W. Egan, and Y. C. Cheng, “Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology,” Molecular Pharmacology, vol. 41, no. 2, pp. 223–229, 1992.
[24]
L. Benimetskaya, J. L. Tonkinson, M. Koziolkiewicz et al., “Binding of phosphorothioate oligodeoxynucleotides to basic fibroblast growth factor, recombinant soluble CD4, laminin and fibronectin is P-chirality independent,” Nucleic Acids Research, vol. 23, no. 21, pp. 4239–4245, 1995.
[25]
D. A. Brown, S. H. Kang, S. M. Gryaznov et al., “Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding,” Journal of Biological Chemistry, vol. 269, no. 43, pp. 26801–26805, 1994.
[26]
M. A. Guvakova, L. A. Yakubov, I. Vlodavsky, J. L. Tonkinson, and C. A. Stein, “Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix,” Journal of Biological Chemistry, vol. 270, no. 6, pp. 2620–2627, 1995.