全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries

DOI: 10.1155/2012/740982

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as “carbohydrate-mimetic peptides (CMPs)” because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination. 1. Introduction A variety of glycoconjugate carbohydrate structures on the cell surface are important for biological events [1]. Carbohydrate structures on the cell surface change according to cell status, for example, during development, differentiation, and malignant alteration. Several glycoconjugates, including stage-specific embryonic antigen (SSEA)-3, SSEA-4, and tumor-rejection antigen (TRA)-1-60, are used as molecular makers of pluripotency to control the quality of induced pluripotent stem (iPS) cells [2]. Carbohydrate-protein interactions are the first cell surface events in cell-cell communication, following which processes such as infection and signal transduction occur. However, the reasons for the changes in carbohydrate structures on the cell surface are not clear. In addition, most receptors for glycoconjugates have not been identified. To investigate the biological roles of carbohydrates, sets of carbohydrates and their corresponding carbohydrate-binding proteins are required. Carbohydrate-binding proteins such as plant lectins, bacterial toxins, and anticarbohydrate antibodies are available for studying carbohydrate-protein interactions [3, 4]. However, the repertoire of carbohydrate structures recognized by these proteins is limited and

References

[1]  A. Varki, “Biological roles of oligosaccharides: all of the theories are correct,” Glycobiology, vol. 3, no. 2, pp. 97–130, 1993.
[2]  K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
[3]  H. Lis and N. Sharon, “Lectins: carbohydrate-specific proteins that mediate cellular recognition,” Chemical Reviews, vol. 98, no. 2, pp. 637–674, 1998.
[4]  W. I. Weis and K. Drickamer, “Structural basis of lectin-carbohydrate recognition,” Annual Review of Biochemistry, vol. 65, pp. 441–473, 1996.
[5]  G. A. Nores, R. D. Lardone, R. Comín, M. E. Alaniz, A. L. Moyano, and F. J. Irazoqui, “Anti-GM1 antibodies as a model of the immune response to self-glycans,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 538–545, 2008.
[6]  S. F. Slovin, S. J. Keding, and G. Ragupathi, “Carbohydrate vaccines as immunotherapy for cancer,” Immunology and Cell Biology, vol. 83, no. 4, pp. 418–428, 2005.
[7]  R. Kannagi and S. Hakomori, “A guide to monoclonal antibodies directed to glycotopes,” Advances in Experimental Medicine and Biology, vol. 491, pp. 587–630, 2001.
[8]  C.-H. Hsu, S.-C. Hung, C.-Y. Wu, and C.-H. Wong, “Toward automated oligosaccharide synthesis,” Angewandte Chemie, vol. 50, no. 50, pp. 11872–11923, 2011.
[9]  T. J. Boltje, T. Buskas, and G. J. Boons, “Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research,” Nature Chemistry, vol. 1, no. 8, pp. 611–622, 2009.
[10]  S. I. Nishimura, “Combinatorial syntheses of sugar derivatives,” Current Opinion in Chemical Biology, vol. 5, no. 3, pp. 325–335, 2001.
[11]  S. M. Hancock, M. D. Vaughan, and S. G. Withers, “Engineering of glycosidases and glycosyltransferases,” Current Opinion in Chemical Biology, vol. 10, no. 5, pp. 509–519, 2006.
[12]  A. M. Daines, B. A. Maltman, and S. L. Flitsch, “Synthesis and modifications of carbohydrates, using biotransformations,” Current Opinion in Chemical Biology, vol. 8, no. 2, pp. 106–113, 2004.
[13]  J. K. Scott, D. Loganathan, R. B. Easley, X. Gong, and I. J. Goldstein, “A family of concanavalin A-binding peptides from a hexapeptide epitope library,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5398–5402, 1992.
[14]  M. N. Fukuda, “Peptide-displaying phage technology in glycobiology,” Glycobiology, vol. 22, no. 3, pp. 318–325, 2012.
[15]  F. C. Dudak, I. H. Boyaci, and B. P. Orner, “The discovery of small-molecule mimicking peptides through phage display,” Molecules, vol. 16, no. 1, pp. 774–789, 2011.
[16]  R. Cortese, F. Felici, G. Galfre, A. Luzzago, P. Monaci, and A. Nicosia, “Epitope discovery using peptide libraries displayed on phage,” Trends in Biotechnology, vol. 12, no. 7, pp. 262–267, 1994.
[17]  T. Matsubara, A. Onishi, T. Saito et al., “Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy,” Journal of Medicinal Chemistry, vol. 53, no. 11, pp. 4441–4449, 2010.
[18]  N. K. Sauter, J. E. Hanson, G. D. Glick et al., “Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography,” Biochemistry, vol. 31, no. 40, pp. 9609–9621, 1992.
[19]  F. X. Theillet, F. A. Saul, B. Vulliez-Le Normand et al., “Structural mimicry of O-antigen by a peptide revealed in a complex with an antibody raised against Shigella flexneri serotype 2a,” Journal of Molecular Biology, vol. 388, no. 4, pp. 839–850, 2009.
[20]  G. P. Smith and V. A. Petrenko, “Phage display,” Chemical Reviews, vol. 97, no. 2, pp. 391–410, 1997.
[21]  G. P. Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface,” Science, vol. 228, no. 4705, pp. 1315–1317, 1985.
[22]  J. K. Scott and G. P. Smith, “Searching for peptide ligands with an epitope library,” Science, vol. 249, no. 4967, pp. 386–390, 1990.
[23]  B. Ru, J. Huang, P. Dai et al., “MimoDB: a new repository for mimotope data derived from phage display technology,” Molecules, vol. 15, no. 11, pp. 8279–8288, 2010.
[24]  J. Huang, B. Ru, P. Zhu et al., “MimoDB 2.0: a mimotope database and beyond,” Nucleic Acids Research, vol. 40, no. D1, pp. D271–D277, 2012.
[25]  K. R. Oldenburg, D. Loganathan, I. J. Goldstein, P. G. Schultz, and M. A. Gallop, “Peptide ligands for a sugar-binding protein isolated from a random peptide library,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5393–5397, 1992.
[26]  D. Jain, K. Kaur, B. Sundaravadivel, and D. M. Salunke, “Structural and functional consequences of peptide-carbohydrate mimicry: crystal structure of a carbohydrate-mimicking peptide bound to concanavalin A,” Journal of Biological Chemistry, vol. 275, no. 21, pp. 16098–16102, 2000.
[27]  D. L. Kooyman, S. B. Mcclellan, W. Parker et al., “Identification and characterization of a galactosyl peptide mimetic. Implications for use in removing xenoreactive anti-a gal antibodies,” Transplantation, vol. 61, no. 6, pp. 851–855, 1996.
[28]  J. Zhan, Z. Xia, L. Xu, Z. Yan, and K. Wang, “A peptide mimetic of Gal-α1,3-Gal is able to block human natural antibodies,” Biochemical and Biophysical Research Communications, vol. 308, no. 1, pp. 19–22, 2003.
[29]  C. L. Martens, S. E. Cwirla, R. Y. W. Lee et al., “Peptides which bind to E-selectin and block neutrophil adhesion,” Journal of Biological Chemistry, vol. 270, no. 36, pp. 21129–21136, 1995.
[30]  M. N. Fukuda, C. Ohyama, K. Lowitz et al., “A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells,” Cancer Research, vol. 60, no. 2, pp. 450–456, 2000.
[31]  L. Yu, P. S. Yu, E. Yee Yen Mui et al., “Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site,” Bioorganic and Medicinal Chemistry, vol. 17, no. 13, pp. 4825–4832, 2009.
[32]  L. L. Eggink and J. K. Hoober, “A biologically active peptide mimetic of N-acetylgalactosamine/galactose,” BMC Research Notes, vol. 2, article 23, 2009.
[33]  Z. Xu, G. S. Qian, Q. Li, Q. J. Feng, G. M. Wu, and K. L. Li, “Screening of mimetic peptides for CD14 binding site with LBP and antiendotoxin activity of mimetic peptide in vivo and in vitro,” Inflammation Research, vol. 58, no. 1, pp. 45–53, 2009.
[34]  R. Hoess, U. Brinkmann, T. Handel, and I. Pastan, “Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3,” Gene, vol. 128, no. 1, pp. 43–49, 1993.
[35]  Q. Lou and I. Pastan, “A Lewis(y) epitope mimicking peptide induces anti-Lewis(y) immune responses in rabbits and mice,” Journal of Peptide Research, vol. 53, no. 3, pp. 252–260, 1999.
[36]  J. Qiu, P. Luo, K. Wasmund, Z. Steplewski, and T. Kieber-Emmons, “Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines,” Hybridoma, vol. 18, no. 1, pp. 103–112, 1999.
[37]  N. Katagihallimath, A. Mehanna, D. Guseva, R. Kleene, and M. Schachner, “Identification and validation of a Lewisx glycomimetic peptide,” European Journal of Cell Biology, vol. 89, no. 1, pp. 77–86, 2010.
[38]  B. M. Charalambous and I. M. Feavers, “Peptide mimics elicit antibody responses against the outer-membrane lipooligosaccharide of group B Neisseria meningitidis,” FEMS Microbiology Letters, vol. 191, no. 1, pp. 45–50, 2000.
[39]  Y. Hou and X. X. Gu, “Development of peptide mimotopes of lipooligosaccharide from nontypeable Haemophilus influenzae as vaccine candidates,” Journal of Immunology, vol. 170, no. 8, pp. 4373–4379, 2003.
[40]  T. Jouault, C. Fradin, F. Dzierszinski et al., “Peptides that mimic Candida albicans-derived β-1,2-linked mannosides,” Glycobiology, vol. 11, no. 8, pp. 693–701, 2001.
[41]  M. Simon-Haldi, N. Mantei, J. Franke, H. Voshol, and M. Schachner, “Identification of a peptide mimic of the L2/HNK-1 carbohydrate epitope,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1380–1388, 2002.
[42]  J. Lang, J. Zhan, L. Xu, and Z. Yan, “Identification of peptide mimetics of xenoreactive α-Gal antigenic epitope by phage display,” Biochemical and Biophysical Research Communications, vol. 344, no. 1, pp. 214–220, 2006.
[43]  A. G. Laman, A. O. Shepelyakovskaya, I. A. Berezin et al., “Identification of pentadecapeptide mimicking muramyl peptide,” Vaccine, vol. 25, no. 15, pp. 2900–2906, 2007.
[44]  G. Rojas, A. Pupo, M. Del Rosario Aleman, and N. Santiago Vispo, “Preferential selection of Cys-constrained peptides from a random phage-displayed library by anti-glucitollysine antibodies,” Journal of Peptide Science, vol. 14, no. 11, pp. 1216–1221, 2008.
[45]  A. Menendez, D. A. Calarese, R. L. Stanfield et al., “A peptide inhibitor of HIV-1 neutralizing antibody 2G12 is not a structural mimic of the natural carbohydrate epitope on gp120,” FASEB Journal, vol. 22, no. 5, pp. 1380–1392, 2008.
[46]  T. Taki, D. Ishikawa, H. Hamasaki, and S. Handa, “Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on β-galactosidase activity,” FEBS Letters, vol. 418, no. 1-2, pp. 219–223, 1997.
[47]  D. Ishikawa, H. Kikkawa, K. Ogino, Y. Hirabayashi, N. Oku, and T. Taki, “GD1α-replica peptides functionally mimic GD1α, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis,” FEBS Letters, vol. 441, no. 1, pp. 20–24, 1998.
[48]  M. Takikawa, H. Kikkawa, T. Asai et al., “Suppression of GD1α ganglioside-mediated tumor metastasis by liposomalized WHW-peptide,” FEBS Letters, vol. 466, no. 2-3, pp. 381–384, 2000.
[49]  J. X. Qiu and D. M. Marcus, “Use of peptide ligands to analyze the fine specificity of antibodies against asialo GM1,” Journal of Neuroimmunology, vol. 100, no. 1-2, pp. 58–63, 1999.
[50]  T. Kieber-Emmons, P. Luo, J. Qiu, T. Y. Chang, M. Blaszczyk-Thurin, and Z. Steplewski, “Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responses,” Nature Biotechnology, vol. 17, no. 7, pp. 660–665, 1999.
[51]  A. Wondimu, T. Zhang, T. Kieber-Emmons et al., “Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice,” Cancer Immunology, Immunotherapy, vol. 57, no. 7, pp. 1079–1089, 2008.
[52]  E. F?rster-Waldl, A. B. Riemer, A. K. Dehof et al., “Isolation and structural analysis of peptide mimotopes for the disialoganglioside GD2, a neuroblastoma tumor antigen,” Molecular Immunology, vol. 42, no. 3, pp. 319–325, 2005.
[53]  A. B. Riemer, E. F?rster-Waldl, K. H. Br?mswig et al., “Induction of IgG antibodies against the GD2 carbohydrate tumor antigen by vaccination with peptide mimotopes,” European Journal of Immunology, vol. 36, no. 5, pp. 1267–1274, 2006.
[54]  M. Bleeke, S. Fest, N. Huebener et al., “Systematic amino acid substitutions improved efficiency of GD2-peptide mimotope vaccination against neuroblastoma,” European Journal of Cancer, vol. 45, no. 16, pp. 2915–2921, 2009.
[55]  E. Bolesta, A. Kowalczyk, A. Wierzbicki et al., “DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses,” Cancer Research, vol. 65, no. 8, pp. 3410–3418, 2005.
[56]  A. Wierzbicki, M. Gil, M. Ciesielski et al., “Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells,” Journal of Immunology, vol. 181, no. 9, pp. 6644–6653, 2008.
[57]  I. Horwacik, D. Czaplicki, K. Talarek et al., “Selection of novel peptide mimics of the GD2 ganglioside from a constrained phage-displayed peptide library,” International Journal of Molecular Medicine, vol. 19, no. 5, pp. 829–839, 2007.
[58]  I. Horwacik, M. Kurciński, M. Bzowska et al., “Analysis and optimization of interactions between peptides mimicking the GD2 ganglioside and the monoclonal antibody 14G2a,” International Journal of Molecular Medicine, vol. 28, no. 1, pp. 47–57, 2011.
[59]  I. Popa, D. Ishikawa, M. Tanaka, K. Ogino, J. Portoukalian, and T. Taki, “GD3-replica peptides selected from a phage peptide library induce a GD3 ganglioside antibody response,” FEBS Letters, vol. 580, no. 5, pp. 1398–1404, 2006.
[60]  Y. Miura, A. Sakaki, M. Kamihira, S. Iijima, and K. Kobayashi, “A globotriaosylceramide (Gb3Cer) mimic peptide isolated from phage display library expressed strong neutralization to Shiga toxins,” Biochimica et Biophysica Acta, vol. 1760, no. 6, pp. 883–889, 2006.
[61]  A. Perez, E. S. Mier, N. S. Vispo, A. M. Vazquez, and R. P. Rodríguez, “A monoclonal antibody against NeuGc-containing gangliosides contains a regulatory idiotope involved in the interaction with B and T cells,” Molecular Immunology, vol. 39, no. 1-2, pp. 103–112, 2002.
[62]  A. López-Requena, C. M. De Acosta, E. Moreno et al., “Gangliosides, Ab1 and Ab2 antibodies. I. Towards a molecular dissection of an idiotype-anti-idiotype system,” Molecular Immunology, vol. 44, no. 4, pp. 423–433, 2007.
[63]  J. H. Youn, H. J. Myung, A. Liav et al., “Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae,” FEMS Immunology and Medical Microbiology, vol. 41, no. 1, pp. 51–57, 2004.
[64]  P. Valadon, G. Nussbaum, L. F. Boyd, D. H. Margulies, and M. D. Scharff, “Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans,” Journal of Molecular Biology, vol. 261, no. 1, pp. 11–22, 1996.
[65]  A. C. M. Young, P. Valadon, A. Casadevall, M. D. Scharff, and J. C. Sacchettini, “The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes,” Journal of Molecular Biology, vol. 274, no. 4, pp. 622–634, 1997.
[66]  D. O. Beenhouwer, R. J. May, P. Valadon, and M. D. Scharff, “High affinity mimotope of the polysaccharide capsule of Cryptococcus neoformans identified from an evolutionary phage peptide library,” Journal of Immunology, vol. 169, no. 12, pp. 6992–6999, 2002.
[67]  P. Valadon, G. Nussbaum, J. Oh, and M. D. Scharff, “Aspects of antigen mimicry revealed by immunization with a peptide mimetic of Cryptococcus neoformans polysaccharide,” Journal of Immunology, vol. 161, no. 4, pp. 1829–1836, 1998.
[68]  S. H. Pincus, M. J. Smith, H. J. Jennings, J. B. Burritt, and P. M. Glee, “Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen,” Journal of Immunology, vol. 160, no. 1, pp. 293–298, 1998.
[69]  G. B. Lesinski, S. L. Smithson, N. Srivastava, D. Chen, G. Widera, and M. A. J. Westerink, “A DNA vaccine encoding a peptide mimic of Streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/c mice,” Vaccine, vol. 19, no. 13-14, pp. 1717–1726, 2001.
[70]  U. K. Buchwald, A. Lees, M. Steinitz, and L. A. Pirofski, “A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice,” Infection and Immunity, vol. 73, no. 1, pp. 325–333, 2005.
[71]  C. M. Smith, C. L. Passo, A. Scuderi et al., “Peptide mimics of two pneumococcal capsular polysaccharide serotypes (6B and 9V) protect mice from a lethal challenge with Streptococcus pneumoniae,” European Journal of Immunology, vol. 39, no. 6, pp. 1527–1535, 2009.
[72]  S. L. Harris, L. Craig, J. S. Mehroke et al., “Exploring the basis of peptide-carbohydrate crossreactivity: evidence for discrimination by peptides between closely related anti-carbohydrate antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2454–2459, 1997.
[73]  Y. Wu, Q. Zhang, D. Sales, A. E. Bianco, and A. Craig, “Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides,” Vaccine, vol. 28, no. 39, pp. 6425–6435, 2010.
[74]  M. C. Grothaus, N. Srivastava, S. L. Smithson et al., “Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display library,” Vaccine, vol. 18, no. 13, pp. 1253–1263, 2000.
[75]  I. Park, I. H. Choi, S. J. Kim, and J. S. Shin, “Peptide mimotopes of Neisseria meningitidis group B capsular polysaccharide,” Yonsei Medical Journal, vol. 45, no. 4, pp. 755–758, 2004.
[76]  V. Lauvrak, G. Berntzen, U. Heggelund et al., “Selection and characterization of cyclic peptides that bind to a monoclonal antibody against meningococcal L3,7,9 lipopolysaccharides,” Scandinavian Journal of Immunology, vol. 59, no. 4, pp. 373–384, 2004.
[77]  P. Torregrossa, L. Buhl, M. Bancila et al., “Selection of poly-α 2,8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity,” Journal of Biological Chemistry, vol. 279, no. 29, pp. 30707–30714, 2004.
[78]  P. Marino, J. C. Norreel, M. Schachner, G. Rougon, and M. C. Amoureux, “A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury,” Experimental Neurology, vol. 219, no. 1, pp. 163–174, 2009.
[79]  C. Lo Passo, A. Romeo, I. Pernice et al., “Peptide mimics of the group B meningococcal capsule induce bactericidal and protective antibodies after immunization,” Journal of Immunology, vol. 178, no. 7, pp. 4417–4423, 2007.
[80]  T. Menéndez, N. F. Santiago-Vispo, Y. Cruz-Leal et al., “Identification and characterization of phage-displayed peptide mimetics of Neisseria meningitidis serogroup B capsular polysaccharide,” International Journal of Medical Microbiology, vol. 301, no. 1, pp. 16–25, 2011.
[81]  D. M. Prinz, S. L. Smithson, and M. A. J. Westerink, “Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C,” Journal of Immunological Methods, vol. 285, no. 1, pp. 1–14, 2004.
[82]  G. R. Moe and D. M. Granoff, “Molecular mimetics of Neisseria meningitidis serogroup B polysaccharide,” International Reviews of Immunology, vol. 20, no. 2, pp. 201–220, 2001.
[83]  S. Falklind-Jerkérus, F. Felici, C. Cavalieri et al., “Peptides mimicking Vibrio cholerae O139 capsular polysaccharide elicit protective antibody response,” Microbes and Infection, vol. 7, no. 15, pp. 1453–1460, 2005.
[84]  M. N. Dharmasena, D. A. Jewell, and R. K. Taylor, “Development of peptide mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and investigation of the structural basis of peptide mimicry,” Journal of Biological Chemistry, vol. 282, no. 46, pp. 33805–33816, 2007.
[85]  M. N. Dharmasena, S. J. Krebs, and R. K. Taylor, “Characterization of a novel protective monoclonal antibody that recognizes an epitope common to Vibrio cholerae Ogawa and Inaba serotypes,” Microbiology, vol. 155, no. 7, pp. 2353–2364, 2009.
[86]  A. Phalipon, A. Folgori, J. Arondel et al., “Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics,” European Journal of Immunology, vol. 27, no. 10, pp. 2620–2625, 1997.
[87]  M. Geiser, D. Schultz, A. Le Cardinal, H. Voshol, and C. García-Echeverría, “Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library,” Cancer Research, vol. 59, no. 4, pp. 905–910, 1999.
[88]  H. Melzer, P. Fortugno, E. Mansouri et al., “Antigenicity and immunogenicity of phage library-selected peptide mimics of the major surface proteophosphoglycan antigens of Entamoeba histolytica,” Parasite Immunology, vol. 24, no. 6, pp. 321–328, 2002.
[89]  G. Gevorkian, E. Segura, G. Acero et al., “Peptide mimotopes of Mycobacterium tubercolosis carbohydrate immunodeterminants,” Biochemical Journal, vol. 387, no. 2, pp. 411–417, 2005.
[90]  A. Barenholz, A. H. Hovav, Y. Fishman, G. Rahav, J. M. Gershoni, and H. Bercovier, “A peptide mimetic of the mycobacterial mannosylated lipoarabinomannan: characterization and potential applications,” Journal of Medical Microbiology, vol. 56, no. 5, pp. 579–586, 2007.
[91]  J. B. Legutki, M. Nelson, R. Titball, D. R. Galloway, A. Mateczun, and L. W. Baillie, “Analysis of peptide mimotopes of Burkholderia pseudomallei exopolysaccharide,” Vaccine, vol. 25, no. 45, pp. 7796–7805, 2007.
[92]  C. Beninati, M. Garibaldi, C. L. Passo et al., “Immunogenic mimics of Brucella lipopolysaccharide epitopes,” Peptides, vol. 30, no. 10, pp. 1936–1939, 2009.
[93]  Y. Chen, B. Liu, D. Yang et al., “Peptide mimics of peptidoglycan are vaccine candidates and protect mice from infection with Staphylococcus aureus,” Journal of Medical Microbiology, vol. 60, no. 7, pp. 995–1002, 2011.
[94]  J. P. Tam, “Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 15, pp. 5409–5413, 1988.
[95]  N. Yuki, “Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes,” Lancet Infectious Diseases, vol. 1, no. 1, pp. 29–37, 2001.
[96]  T. Feizi, “Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens,” Nature, vol. 314, no. 6006, pp. 53–57, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133