全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Allelic Imbalance in TOR1A mRNA Expression in Manifesting and Non-Manifesting Carriers of the GAG-Deletion

DOI: 10.1155/2012/985260

Full-Text   Cite this paper   Add to My Lib

Abstract:

Early onset dystonia (EOD) is associated with a 3bp-(ΔGAG) in-frame deletion in the TOR1A gene, which encodes for torsinA. Carriers of the mutant (ΔGAG) allele can either develop or escape a dystonic phenotype (~30% penetrance). The expression ratio of the two alleles could be important for the manifestation or prevention of the disease since wild-type (WT) torsinA is thought to have protective function. Absence of an antibody discriminating WT from ΔE torsinA has precluded the determination ΔE and WT torsinA levels in manifesting and nonmanifesting carriers. We performed quantitative analysis of TOR1A allele expression in manifesting (MC) and nonmanifesting (NMC) carriers using quantitative allele-specific PCR (qASPCR) to determine the levels of mutant versus WT torsinA mRNA. The technique described showed high degree of specificity in detecting the two alleles. The present study represents the first comprehensive analysis of biallelic expression of the TOR1A gene in lymphoblast and brain samples from patients and NMC relatives. We demonstrate that mRNA is transcribed from both the WT and ΔGAG allele in peripheral and neural tissues with a trend for increased expression of the ΔGAG allele compared to the WT in carriers regardless of their phenotype and thus cannot account for the reduced penetrance. 1. Introduction Most autosomal genes are transcribed from both alleles except those regulated by genomic imprinting [1]. However, nonimprinted autosomal genes can also demonstrate unequal expression of their two alleles due to cis acting polymorphisms in their promoter, enhancer, or other regulatory regions linked to one of the two alleles, selectively affecting its transcription and/or mRNA stability/processing, including splicing and turnover [2, 3]. In fact, it has been estimated that among human brain expressed genes, approximately 20% exhibit unequal expression of the two alleles [2–4]. This phenomenon is termed “allelic imbalance,” and examples of genes showing allelic imbalance include the serotonin transporter (SLC6A4) [5], the mu opioid receptor (OPRM1) [6], and the multidrug resistance polypeptide 1 (MDR1, ABCB1) [7]. Allelic imbalance in gene expression is of particular importance in carriers of a mutant allele associated with a genetic disease. Early onset dystonia (EOD) is associated with a 3?bp-(ΔGAG) in-frame deletion in the TOR1A gene [8], which encodes for torsinA [9]. Individuals heterozygous for the mutant (ΔGAG) allele can either develop or escape a dystonic phenotype (~30% penetrance) [10]. The expression ratio of the two alleles could

References

[1]  F. Y. Ideraabdullah, S. Vigneau, and M. S. Bartolomei, “Genomic imprinting mechanisms in mammals,” Mutation Research, vol. 647, no. 1-2, pp. 77–85, 2008.
[2]  H. S. Lo, Z. Wang, Y. Hu et al., “Allelic variation in gene expression is common in the human genome,” Genome Research, vol. 13, no. 8, pp. 1855–1862, 2003.
[3]  H. Yan, W. Yuan, V. E. Velculescu, B. Vogelstein, and K. W. Kinzler, “Allelic variation in human gene expression,” Science, vol. 297, no. 5584, p. 1143, 2002.
[4]  P. R. Buckland, B. Hoogendoorn, C. A. Guy et al., “A high proportion of polymorphisms in the promoters of brain expressed genes influences transcriptional activity,” Biochimica et Biophysica Acta, vol. 1690, no. 3, pp. 238–249, 2004.
[5]  J. E. Lim, A. Papp, J. Pinsonneault, W. Sadée, and D. Saffen, “Allelic expression of serotonin transporter (SERT) mRNA in human pons: lack of correlation with the polymorphism SERTLPR,” Molecular Psychiatry, vol. 11, no. 7, pp. 649–662, 2006.
[6]  Y. Zhang, D. Wang, A. D. Johnson, A. C. Papp, and W. Sadée, “Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32618–32624, 2005.
[7]  D. Wang, A. D. Johnson, A. C. Papp, D. L. Kroetz, and W. Sadée, “Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability,” Pharmacogenetics and Genomics, vol. 15, no. 10, pp. 693–704, 2005.
[8]  L. J. Ozelius, P. L. Kramer, D. de Leon et al., “Strong allelic association between the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews,” American Journal of Human Genetics, vol. 50, no. 3, pp. 619–628, 1992.
[9]  L. J. Ozelius, J. W. Hewett, C. E. Page et al., “The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein,” Nature Genetics, vol. 17, no. 1, pp. 40–48, 1997.
[10]  S. B. Bressman, C. Sabatti, D. Raymond et al., “The DYT1 phenotype and guidelines for diagnostic testing,” Neurology, vol. 54, no. 9, pp. 1746–1752, 2000.
[11]  R. D. Vale, “AAA proteins: lords of the ring,” Journal of Cell Biology, vol. 150, no. 1, pp. F13–F19, 2000.
[12]  X. O. Breakefield, C. Kamm, and P. I. Hanson, “TorsinA: movement at many levels,” Neuron, vol. 31, no. 1, pp. 9–12, 2001.
[13]  J. Chen, S. Germer, R. Higuchi, G. Berkowitz, J. Godbold, and J. G. Wetmur, “Kinetic polymerase chain reaction on pooled DNA: a high-throughput, high-efficiency alternative in genetic epidemiological studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 1, pp. 131–136, 2002.
[14]  L. Lambertini, A. I. Diplas, M. J. Lee, R. Sperling, J. Chen, and J. Wetmur, “A sensitive functional assay reveals frequent loss of genomic imprinting in human placenta,” Epigenetics, vol. 3, no. 5, pp. 261–269, 2008.
[15]  D. Martino, M. S. Aniello, G. Masi et al., “VaLidity of family history data on primary adult-onset dystonia,” Archives of Neurology, vol. 61, no. 10, pp. 1569–1573, 2004.
[16]  R. Kumar, A. Dagher, W. D. Hutchison, A. E. Lang, and A. M. Lozano, “Globus pallidus deep brain stimulation for generalized dystonia: clinical and pet investigation,” Neurology, vol. 53, no. 4, pp. 871–874, 1999.
[17]  S. J. Augood, J. B. Penney Jr., I. K. Friberg et al., “Expression of the early onset torsion dystonia gene (DYT1) in human brain,” Annals of Neurology, vol. 43, no. 5, pp. 669–673, 1998.
[18]  M. E. Page, L. Bao, P. Andre et al., “Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (ΔE) TorsinA in transgenic mice,” Neurobiology of Disease, vol. 39, no. 3, pp. 318–326, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133