|
BMC Genomics 2007
Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditionsAbstract: Upon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92) were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of A. pleuropneumoniae. Genes coding for a possible Yfe system (yfeABCD), implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of Neisseria meningitidis involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes.We have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction.Actinobacillus pleuropneumoniae, etiological agent of porcine pleuropneumonia, causes great commercial losses to the swine industry worldwide [1]. Transmission of this highly contagious disease that affects pigs of all ages occurs mostly by aerosol and close contact with infected animals [2]. During 24 to 48 hours of the acute phase of the disease, formation of extensive and fibrinohemorrhagic lung lesions is often fatal. Animals that survive the disease may become asymptomatic carriers of the bacteria, developing localized and necrotizing lesions associated with
|