|
BMC Genomics 2007
EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotesAbstract: A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP). The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect), repeat unit length (mono- to hexa-nucleotide), repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided.The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.Microsatellites, also called as simple sequence repeats (SSRs) or simple tandem repeats (STRs) are ubiquitous component of eukaryotic genomes. A microsatellite consists of a specific sequence of DNA which contains 1–6 bp long (mono- to hexa- nucleotide) tandem repeats viz. (A)16, (GA)20, (GATA)30. Over the years, molecular biologists have increasingly exploited these sequences for diverse applications.With the whole genome sequencing initiatives of various eukaryotic organisms, large amount of genomic sequence data has accumulated over the last few years. These sequence resources available in the public domain have also served as an attractive source of in silico mining of microsatellite sequences [1-5]. In silico mining of these sequences offers advantage in terms of time, labour
|