全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
BMC Genomics  2007 

Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes

DOI: 10.1186/1471-2164-8-286

Full-Text   Cite this paper   Add to My Lib

Abstract:

Analysis of 185 representative bacterial chromosomes showed diverse and characteristic patterns of skews among different clades. The base composition skews in the coding sequences were used to derive quantitatively the effect of replication-driven mutation plus subsequent selection ('replication-associated pressure', RAP), and the effect of transcription-driven mutation plus subsequent selection at translation level ('transcription-associate pressure', TAP). While different clades exhibit distinct patterns of RAP and TAP, RAP is absent or nearly absent in some bacteria, but TAP is present in all. The selection pressure at the translation level is evident in all bacteria based on the analysis of the skews at the three codon positions. Contribution of asymmetric cytosine deamination was found to be weak to TAP in most phyla, and strong to RAP in all the Proteobacteria but weak in most of the Firmicutes. This possibly reflects the differences in their chromosomal replication machineries. A strong negative correlation between TAP and G+C content and between TAP and chromosomal size were also revealed.The study reveals the diverse mutation and selection forces associated with replication and transcription in various groups of bacteria that shape the distinct patterns of base composition skews in the chromosomes during evolution. Some closely relative species with distinct base composition parameters are uncovered in this study, which also provides opportunities for comparative bioinformatic and genetic investigations to uncover the underlying principles for mutation and selection.A genome contains coding information that specifies protein and RNA sequences and structural information that specifies local DNA conformation involved in interactions with proteins. On top of these is the subtle global tendency of a genome to move toward a preferred nucleotide composition and distribution that are characteristic for each clade. Most notable is the G+C content, which vary widely

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133