|
BMC Genomics 2007
Multiple splice variants within the bovine silver homologue (SILV) gene affecting coat color in cattle indicate a function additional to fibril formation in melanophoresAbstract: In contrast to previous results in other species reporting SILV expression exclusively in pigmented tissues, our experiments provide evidence that the bovine SILV gene is expressed in a variety of tissues independent of pigmentation. Our data show that the bovine SILV gene generates an unexpectedly large number of different transcripts occurring in skin as well as in non-pigmented tissues, e.g. liver or mammary gland. The alternative splice sites are generated by internal splicing and primarily remove complete exons. Alternative splicing predominantly affects the repeat domain of the protein, which has a functional key role in fibril formation during eumelanosome development.The expression of the bovine SILV gene independent of pigmentation suggests SILV functions exceeding melanosome development in cattle. This hypothesis is further supported by transcript variants lacking functional key elements of the SILV protein relevant for eumelanosome development. Thus, the bovine SILV gene can serve as a model for the investigation of the putative additional functions of SILV. Furthermore, the splice variants of the bovine SILV gene represent a comprehensive natural model to refine the knowledge about functional domains in the SILV protein. Our study exemplifies that the extent of alternative splicing is presumably much higher than previously estimated and that alternatively spliced transcripts presumably can generate molecules of deviating function compared to their constitutive counterpart.The silver homologue(SILV) gene has been a target for many investigations concerning development of melanosomes, which are the specific pigment carrying compartments within melanophores, e.g. in melanocytes. In humans, SILV plays a major role in studies regarding melanoma diagnosis and therapy, because SILV is a sensitive melanoma marker on transcript and protein level [1,2] and represents a melanoma specific antigen recognized by tumor infiltrating cytotoxic T lymphocytes [3]. The SILV
|