|
BMC Genomics 2007
Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genesAbstract: A normalized cDNA library generated 24,128 sequences, which were assembled into 7,765 unique genes; 25.2% of them displayed significant similarity to annotated proteins from other organisms, 74.3% a weak similarity to the same set of known proteins, and 0.5% were orphans. We identified putative pheromone receptors and genes that in other fungi are involved in the mating process. We also identified many sequences similar to genes known to be involved in pathogenicity in other fungi. The M. violaceum EST database, MICROBASE, is available on the Web and provides access to the sequences, assembled contigs, annotations and programs to compare similarities against MICROBASE.This study provides a basis for cloning the mating type locus, for further investigation of pathogenicity genes in the anther smut fungi, and for comparative genomics.Deciphering the molecular mechanisms involved in infection is important for the control of devastating crop diseases. Furthermore, the comparison of pathogenicity-related genes from different fungi provides insight into the evolution of host-pathogen interactions, thereby advancing our understanding of host specificity, virulence, and the emergence of new diseases. Modern sequencing technologies have led to a remarkable increase in genomic data available for identifying genes by similarity searches [1]. Key genes involved in pathogenicity in several fungi have been compiled into the PHI database [2].In the smut fungi of monocot hosts (e.g. Ustilago maydis and U. hordei, major pathogens of corn and barley, respectively), the sexual phase and the genes linked to the mating-type loci play a key role in development and pathogenicity [3]. Mating-type loci determine sexual compatibility: only individuals differing at these loci can mate. In U. maydis, cell recognition and fusion is regulated by a pheromone/receptor system that resides at the a locus. After fusion, the dikaryon is maintained and cells switch to filamentous growth if they are het
|