|
BMC Genomics 2007
Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cellsAbstract: As a model system to test this hypothesis, human hepatoblastoma cells (HepG2) were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG) accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS) analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs) as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK) reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK), on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis), than for the stearoyl-CoA desaturase (SCD) activation (which was identified for the TG-alone analysis).These results demonstrate the applicability of GA/PLS in identifying the genes that regulate multiple cellular responses of interest and that genes regulating multiple cellular responses may be better candidates for countering complex diseases.Many human diseases result from alterations in multiple cellular processes. Therefore, targeting an individual process or response may not be sufficient to combat the progression of such diseases. For efficient treatment of these diseases, it is imperative to identify those cellular target
|