|
BMC Genomics 2009
Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium)Abstract: We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes.Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated.Reactive oxygen species (ROS), including singlet oxygen, superoxide anions, hydrogen peroxide (H2O2), and hydroxyl radicals, are generated by oxidative reactions and other metabolic processes in cells and could have deleterious effects on growth and survival [1-4]. Naturally, cells have evolved mechanisms to scavenge excess ROS to prevent cellular damage, including up-regulation of antioxidant defense mechanisms [5-8]. In addition to the necessity of controlling excess potentially damaging ROS, eukaryotes have harnessed ROS as signaling molecules for a diverse array of regulatory processes, including responses to abiotic and biotic stresses, regulation of growth and development, and control of programmed cell death [
|