|
BMC Genomics 2009
Molecular evolution of the Bovini tribe (Bovidae, Bovinae): Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?Abstract: We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus) and Mithan (Bos frontalis) and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations.The effect of selection depends on effective population size and the selection coefficient (Nes). Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the Bovini. This may have important implications for tests of selection such as the McDonald-Kreitman test. Surprisingly we have also detected a significant difference in the supposed neutral substitution rate between synonymous and noncoding sites in the Bovine genome, with a 30% higher rate of substitution at synonymous sites. This is due, at least in part, to an excess of the highly mutable CpG dinucleotides at synonymous sites, which will have implications for time of divergence estimates from molecular data.Domestication implies a period of intense phenotypic selection that should result in dramatic changes to specific areas of the genome. Therefore, one might expect to see a signature of selection in the DNA sequence of domestic species as measured by the ratio of nonsynonymous to synonymous substitutions per site (dN/dS) [1].The McDonald-Kreitman test [2] compares the dN/dS rate in the divergence between species to the dN/dS rate in common polymorphisms on the
|