全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2013 

A Converse to a Theorem of Oka and Sakamoto for Complex Line Arrangements

DOI: 10.3390/math1010031

Keywords: line arrangement, hyperplane arrangement, Oka and Sakamoto, direct product of groups, fundamental groups, algebraic curves

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let C 1 and C 2 be algebraic plane curves in C 2 such that the curves intersect in d1 · d2 points where d1, d2 are the degrees of the curves respectively. Oka and Sakamoto proved that π1( C 2 \ C 1 U C 2)) ??π1?( C 2 \? C 1) × π1?( C 2 \? C 2) [1]. In this paper we prove the converse of Oka and Sakamoto’s result for line arrangements. Let A 1 and A 2 be non-empty arrangements of lines in C 2 such that π1?(M( A 1 U? A 2)) ?? π1?(M( A 1)) ×? π1?(M( A 2)) Then, the intersection of A 1 and A 2 consists of / A 1/ ·? / A 2/ points of multiplicity two.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133