全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Immobilization of Poly(1,1-dimethysilacyclobutane) by Means of Anionic Ring-Opening Polymerization on Organic Nanoparticles and Reinvestigation of Crystallization

DOI: 10.3390/polym5010284

Keywords: polycarbosilanes, anionic polymerizations, crystallization, nanoparticles, surface-attached polymers

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, the synthesis of poly(1,1-dimethylsilacyclobutane) (PDMSB) by anionic ring opening polymerization (ROP) is reinvestigated, leading to narrowly distributed molar masses (polydispersities 1.04–1.15) in the range of 2.3 to 60?kg?mol ?1. Investigations of thermal behavior for low molar mass PDMSB revealed an untypical multiple peaks melting phenomenon, which at first glance, seems to be of the same origin as low molar mass poly(ethylene oxide)s. Small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) measurements are done, proving the fast crystallization and subsequent recrystallization for investigated low molar mass samples. Synthetic attempts are expanded to the surface-initiated anionic ROP of 1,1-dimethylsilacyclobutane (DMSB) monomer from the surface of cross-linked polystyrene (PS) nanoparticles. Novel polycarbosilanes (PCS)/organic core/shell particles are obtained, which are investigated by using transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments. First insights into the crystallization behavior of surface-attached PDMSB chains reveal that crystallization seems to be hindered.

References

[1]  Birot, M.; Pillot, J.-P.; Dunogues, J. Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem. Rev. 1995, 95, 1443–1477, doi:10.1021/cr00037a014.
[2]  Sanchez, J.C.; Trogler, W.C. Hydrosilylation of diynes as a route to functional polymers delocalized through silicon. Macromol. Chem. Phys. 2008, 209, 1527–1540, doi:10.1002/macp.200800235.
[3]  Vakifahmetoglu, C. Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review. Adv. Appl. Ceram. 2011, 110, 188–204, doi:10.1179/1743676111Y.0000000007.
[4]  Fukushima, M.; Colombo, P. Silicon carbide-based foams from direct blowing of polycarbosilane. J. Eur. Ceram. Soc. 2012, 32, 503–510, doi:10.1016/j.jeurceramsoc.2011.09.009.
[5]  Schawaller, D.; Clau?, B.; Buchmeiser, M.R. Ceramic filament fibers—a review. Macromol. Mater. Eng. 2012, 297, 502–522, doi:10.1002/mame.201100364.
[6]  Yamashita, H.; Suzuki, Y.; Rao, T.V.; Uchimaru, Y. Synthesis and electrochemical, optical, and thermal properties of polycarbosilanes with silylene–vinylene–phenylene–vinylene backbones and triphenylamine or carbazole unit-containing side chains. J. Organomet. Chem. 2012, 710, 59–67, doi:10.1016/j.jorganchem.2012.03.017.
[7]  Gupta, R.K.; Mishra, R.; Tiwari, R.K.; Ranjan, A.; Saxena, A.K. Studies on the rheological behavior of polycarbosilane part i: Effect of time, temperature and atmosphere. silicon 2010, 3, 27–35.
[8]  Vakifahmetoglu, C.; Balliana, M.; Colombo, P. Ceramic foams and micro-beads from emulsions of a preceramic polymer. J. Eur. Ceram. Soc. 2011, 31, 1481–1490, doi:10.1016/j.jeurceramsoc.2011.02.012.
[9]  Friebe, L.; Liu, K.; Obermeier, B.; Petrov, S.; Dube, P.; Manners, I. Pyrolysis of Polycarbosilanes with pendant nickel clusters: Synthesis and characterization of magnetic ceramics containing nickel and nickel silicide nanoparticles. Chem. Mater. 2007, 19, 2630–2640, doi:10.1021/cm062470j.
[10]  Chen, J.; He, G.; Liao, Z.; Zeng, B.; Ye, J.; Chen, L.; Xia, H.; Zhang, L. Control of structure formation of polycarbosilane synthesized from polydimethylsilane by Kumada rearrangement. J. Appl. Polym. Sci. 2008, 108, 3114–3121, doi:10.1002/app.27262.
[11]  Fang, Y.; Huang, M.; Yu, Z.; Xia, H.; Chen, L.; Zhang, Y.; Zhang, L. Synthesis, Characterization, and Pyrolytic Conversion of a Novel Liquid Polycarbosilane. J. Am. Ceram. Soc. 2008, 91, 3298–3302, doi:10.1111/j.1551-2916.2008.02603.x.
[12]  Li, H.; Zhang, L.; Cheng, L.; Wang, Y.; Yu, Z.; Huang, M.; Tu, H.; Xia, H. Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. J. Mater. Sci. 2008, 43, 2806–2811, doi:10.1007/s10853-008-2539-8.
[13]  Yu, Z.; Li, R.; Zhan, J.; Zhou, C.; Yang, L.; He, G.; Xia, H. Synthesis and characterization of a propargyl-substituted polycarbosilane with high ceramic yield. J. Appl. Polym. Sci. 2011, 121, 3400–3406.
[14]  Will, U.; Veljanovski, D.; Harter, P.; Rieger, B. Hyperbranched Polycarbosilanes of Homogeneous Architecture: Regioselective Hydrosilylation of AB2Monomers and Consecutive Functionalization. Macromolecules 2010, 43, 934–938, doi:10.1021/ma902425y.
[15]  Liao, C.X.; Weber, W.P. Synthesis and Properties of Novel Functionally Substituted Carbosilane Polymers. Macromolecules 1993, 26, 563–566, doi:10.1021/ma00056a001.
[16]  Ganicz, T.; Staficzyk, W.; Biatecka-Florjaficzyk, E.; Sledzifiska, I. Synthesis and characterization of liquid crystal polycarbosilanes: poly(1-methyl-1-silaethylene), poly(1-methyl-1-silabutane)and poly(1-silabutane) with pendant mesogenic groups. Polymer 1996, 37, 4167–4174, doi:10.1016/0032-3861(96)00278-9.
[17]  Shankar, R.; Saxena, A.; Brar, A.S. Synthesis and reactivity of novel oligosilanes bearing functional carbosilane side chains. J. Organomet. Chem. 2001, 628, 262–270, doi:10.1016/S0022-328X(01)00784-7.
[18]  Wurm, F.; Schule, H.; Frey, H. Amphiphilic Linear-Hyperbranched Block Copolymers with Linear Poly(ethylene oxide) and Hyperbranched Poly(carbosilane) Block. Macromolecules 2008, 41, 9602–9611, doi:10.1021/ma8018427.
[19]  Wurm, F.; Hilf, S.; Frey, H. Electroactive linear-hyperbranched block copolymers based on linear poly(ferrocenylsilane)s and hyperbranched poly(carbosilane)s. Chem. Eur. J. 2009, 15, 9068–9077, doi:10.1002/chem.200900666.
[20]  Kudo, H.; Fujiwara, Y.; Miyasaka, M.; Nishikubo, T. Synthesis of polycarbosilanes by A2 + Bn (n = 2, 3, and 4) type hydrosilylation reaction and evaluation of their refractive index properties. J. Polym. Sci. A Polym. Chem. 2010, 48, 5746–5751, doi:10.1002/pola.24379.
[21]  Schacher, F.H.; Rupar, P.A.; Manners, I. Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew. Chem. Int. Ed. 2012, 51, 7898–7921, doi:10.1002/anie.201200310.
[22]  Rangou, S.; Shishatskiy, S.; Filiz, V.; Abetz, V. Poly(vinyl trimethylsilane) and block copolymers of vinyl trimethylsilane with isoprene: Anionic polymerization, morphology and gas transport properties. Eur. Polym. J. 2011, 47, 723–729, doi:10.1016/j.eurpolymj.2010.10.024.
[23]  Zhou, S.Q.; Park, Y.T.; Manuel, G.; Weber, W.P. Anionic ring opening polymerization of 1-silacyclopent-3-ene. Polym. Bull. 1990, 23, 491–496, doi:10.1007/BF00419967.
[24]  Liao, C.X.; Weber, W.P. Synthesis and characterization of poly(1-methyl-l-silabutane), poly(1-phenyl-l-silabutane) and poly(1-silabutane). Polym. Bull. 1992, 28, 281–286, doi:10.1007/BF00294823.
[25]  Theurig, M.; Weber, W.P. Stereoselective anionic ring opening polymerization of 1,1-dimethyl-l-silacyclobutene. Polym. Bull. 1992, 28, 17–21, doi:10.1007/BF01045632.
[26]  Rulkens, R.; Lough, A.J.; Manners, I. Anionic Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1]Ferrocenophanes: Characterization of Short-Chain Models for Poly(ferrocenylsilane) High Polymers. J. Am. Chem. Soc. 1994, 116, 797–798, doi:10.1021/ja00081a062.
[27]  Suzuki, M.; Kotani, J.; Gyobu, S.; Kaneko, T.; Saegusa, T. Synthesis of Sequence-Ordered Polysilane by Anionic Ring-Opening Polymerization of Phenylnonamethylcyclopentasilane. Macromolecules 1994, 27, 2360–2363, doi:10.1021/ma00086a066.
[28]  Kulbaba, K.; Manners, I. Polyferrocenylsilanes: Metal-Containing Polymers for Materials Science, Self-Assembly and Nanostructure Applications. Macromol. Rap. Comm. 2001, 22, 711–724, doi:10.1002/1521-3927(20010701)22:10<711::AID-MARC711>3.0.CO;2-C.
[29]  Bellas, V.; Rehahn, M. Polyferrocenylsilan-basierte Polymersysteme. Angew. Chem. 2007, 119, 5174–5197, doi:10.1002/ange.200604420.
[30]  Bellas, V.; Rehahn, M. Polyferrocenylsilane-Based Polymer Systems. Angew. Chem. Int. Ed. 2007, 46, 5082–5104, doi:10.1002/anie.200604420.
[31]  Knischka, R.; Frey, H.; Rapp, U.; Mayer-Posner, F.J. Living anionic ring-opening polymerization of 1,1-dipropylsilacyclobutane. Macromol. Rap. Comm. 1998, 19, 455–459, doi:10.1002/(SICI)1521-3927(19980901)19:9<455::AID-MARC455>3.0.CO;2-X.
[32]  Matsumoto, K.; Yamaoka, H. Living Anionic Ring-Opening Polymerization of 1,1-Dimethylsilacyclobutane. Macromolecules 1995, 28, 7029–7031, doi:10.1021/ma00124a048.
[33]  Matsumoto, K.; Shimazu, H.; Deguchi, M.; Yamaoka, H. Anionic Ring-Opening Polymerization of Silacyclobutane Derivatives. J. Polym. Sci. A Poly. Chem. 1997, 35, 3207–3216, doi:10.1002/(SICI)1099-0518(19971115)35:15<3207::AID-POLA13>3.0.CO;2-F.
[34]  Kawahara, S.; Nagai, A.; Kazama, T.; Takano, A.; Isono, Y. Preparation of Poly(1,1-dimethyl silabutane) by Anionic Polymerization and Its Crystallization. Macromolecules 2004, 37, 315–321, doi:10.1021/ma030290e.
[35]  Nghiem, Q.D.; Kim, D.-P. Direct Preparation of High Surface Area Mesoporous SiC-Based Ceramic by Pyrolysis of a Self-Assembled Polycarbosilane-block-Polystyrene Diblock Copolymer. Chem. Mater. 2008, 20, 3735–3739, doi:10.1021/cm702688j.
[36]  Gallei, M.; Tockner, S.; Klein, R.; Rehahn, M. Silacyclobutane-Based Diblock Copolymers with Vinylferrocene, Ferrocenylmethyl Methacrylate, and [1]Dimethylsilaferrocenophane. Macromol. Rap. Comm. 2010, 31, 889–896, doi:10.1002/marc.200900897.
[37]  Ungar, G.; Putra, E.G. R.; de Silva, D.S. M.; Shcherbina, M.A.; Waddon, A.J. The effect of self-poisoning on crystal morphology and growth rates. Adv. Polym. Sci. 2005, 180, 45–87.
[38]  Keller, N.; Pham-Huu, C.; Crouzet, C.; Ledoux, M.J.; Savin-Poncet, S.; Nougayrede, J.-B.; Bousquet, J. Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catal. Today 1999, 53, 535–542.
[39]  Connolly, E.J.; O'Halloran, G.M.; Pham, H.T.M.; Sarro, P.M.; French, P.J. Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sens. Actuators A 2002, 99, 25–30, doi:10.1016/S0924-4247(01)00885-8.
[40]  TamilSelvan, S.; Aldeyab, S.S.; Zaidi, J.S. M.; Arivuoli, D.; Ariga, K.; Mori, T.; Vinu, A. Preparation and characterization of highly ordered mesoporous SiC nanoparticles with rod shaped morphology and tunable pore diameters. Journal of Materials Chemistry 2011, 21, 8792–8799.
[41]  Kovacs, A.J.; Gonthier, A. Crystallization and fusion of self-seeded polymers. Colloid Polym. Sci. 1972, 250, 530–551.
[42]  Kovacs, A.J.; Gonthier, A.; Straupe, C. Isothermal growth, thickening, and melting of poly(ethylene oxide) singel crystals in the bulk. J. Polym. Sci. Polym. Symp. 1975, 50, 283–325, doi:10.1002/polc.5070500117.
[43]  Kovacs, A.J.; Straupe, C.; Gonthier, A. Isothermal growth, thickening, and melting of poly(ethylene oxide) singel crystals in the bulk. J. Polym. Sci. Polym. Symp. 1977, 59, 31–54, doi:10.1002/polc.5070590105.
[44]  Kovacs, A.J.; Straupe, C. Isothermal growth, thickening and melting of poly(ethylene oxide) single crystals in the bulk. Part 4: Dependence of pathological crystal habits on temperature and thermal history. Faraday Discuss. Chem. Soc. 1979, 68, 225–239.
[45]  Kovacs, A.J.; Straupe, C. Isothermal growth, thickening and melting of poly(ethylene oxide) single crystals in the bulk. J. Cryst. Growth 1980, 48, 210–226, doi:10.1016/0022-0248(80)90211-0.
[46]  Cheng, S.Z. D.; Zhang, A.; Chen, J. Existence of a Transient Nonintegral Folding Lamellar Crystal in a Low Molecular Mass Poly (Ethylene Oxide) Fraction Crystallized from the Melt. J. Polym. Sci. C Polym. Lett. 1990, 28, 233–239, doi:10.1002/pol.1989.140280704.
[47]  Cheng, S.Z. D.; Zhang, A.; Barley, J.S.; Chen, J.; Habenschuss, A.; Zschack, P.R. Isothermal Thickening and Thinning Processes in Low Molecular Weight Poly(ethy1ene oxide) Fractions. 1. From Nonintegral-Folding to Integral-Folding Chain Crystal Transitions. Macromolecules 1991, 24, 3973–3944.
[48]  Cheng, S.Z.D.; Zhang, A.; Chen, J.; Heberer, D.P. Nonintegral and Integral Folding Crystal Growth in Low-Molecular Mass Poly (ethylene Oxide) Fractions. I. Isothermal lamellar Thickening and Thinning. J. Polym. Sci. B Polym. Phys. 1991, 29, 287–297, doi:10.1002/polb.1991.090290304.
[49]  Cheng, S.Z.D.; Chen, J.; Zhang, A.; Heberer, D.P. Nonintegral and Integral Folding Crystal Growth in Low-Molecular Mass Poly (ethylene Oxide) Fractions. II. End-Group Effect: α,ω-Methoxy-Poly(ethylene Oxide). J. Polym. Sci. B Polym. Phys. 1991, 29, 299–310.
[50]  Cheng, S.Z.D.; Chen, J. Nonintegral and Integral Folding Crystal Growth in Low-Molecular Mass Poly (ethylene Oxide) Fractions,III. Linear Crystal Growth Rates and Crystal Morphology. J. Polym. Sci. B Polym. Phys. 1991, 29, 311–327, doi:10.1002/polb.1991.090290306.
[51]  Cheng, S.Z.D.; Chen, J.; Barley, J.S.; Zhang, A. Isothermal Thickening and Thinning Processes in Low Molecular Weight Poly(ethy1ene oxide) Fractions Crystallized from the Melt.3. Molecular Weight Dependence. Macromolecules 1992, 25, 1453–1460, doi:10.1021/ma00031a015.
[52]  Cheng, S.Z.D.; Wu, S.S.; Chen, J.; Zhuo, Q.; Quirk, R.P.; von Meerwall, E.D.; Hsiao, B.S.; Habenschuss, A.; Zschack, P.R. Isothermal Thickening and Thinning Processes in Low Molecular Weight Poly(ethy1ene oxide) Fractions Crystallized from the Melt.4. End-Group Dependence. Macromolecules 1993, 26, 5105–5117.
[53]  Cheng, S.Z.D.; Chen, J.; Wu, S.X.; Zhang, A.; Yandrasits, M.A.; Zhuo, Q.; Quirk, R.P.; Habenschuss, A.; Zschack, P.R. Nonintegral and Integral Folding Crystal Growth in Low Molecular Weight Poly(Ethylene Oxide) Fractions. Cryst. Polym. 1993, 405, 51–62.
[54]  Lee, S.-W.; Chen, E.; Zhang, A.; Yoon, Y.; Moon, B.S.; Lee, S.; Harris, F.W.; Cheng, S.Z. D. Isothermal Thickening and Thinning Processes in Low Molecular Weight Poly(ethylene oxide) Fractions Crystallized from the Melt. 5. Effect of Chain Defects. Macromolecules 1996, 29, 8816–8823.
[55]  Chen, E.-Q.; Lee, S.-W.; Zhang, A.; Moon, B.-S.; Mann, I.; Harris, F.W.; Cheng, S.Z. D.; Hsiao, B.S.; Yeh, F.; Merrewell, E.von; Grubb, D.T. Isothermal Thickening and Thinning Processes in Low-Molecular-Weight Poly(ethylene oxide) Fractions Crystallized from the Melt. 8. Molecular Shape Dependence. Macromolecules 1999, 32, 4784–4793.
[56]  Chen, E.-Q.; Lee, S.-W.; Zhang, A.; Moon, B.-S.; Honigfort, P.S.; Mann, I.; Lin, H.-M.; Harris, F.W.; Cheng, S.Z. D.; Hsiao, B.S.; Yeh, F. Isothermal thickening and thinning processes in low molecular weight poly(ethylene oxide) fractions crystallized from the melt 6. Configurational defects in molecules. Polymer 1999, 40, 4543–4551, doi:10.1016/S0032-3861(99)00069-5.
[57]  Mazurowski, M.; Gallei, M.; Li, J.; Didzoleit, H.; Stühn, B.; Rehahn, M. Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization. Macromolecules 2012, 45, 8970–8981, doi:10.1021/ma3020195.
[58]  Rieger, J. The Glass Transition Temperature of Polystyrene. J. Therm. Anal. 1996, 46, 965–972, doi:10.1007/BF01983614.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133