The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI) and atomic force microscopy (AFM). The monolayer system, built using the Langmuir-Blodgett (LB) technique, consists of 3 mol % poly(ethylene glycol) (PEG) lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl- sn-glycero-3-phosphocholine (SOPC), and cholesterol (CHOL). In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.
References
[1]
Croll, J.G.A. A new hypothesis for the development of blisters in asphalt pavements. Int. J. Pavement Eng. 2007, 9, 59–67, doi:10.1080/10298430701204736.
[2]
Pangule, R.C.; Banerjee, I.; Sharma, A. Adhesion induced mesoscale instability patterns in thin pdms-metal bilayers. J. Chem. Phys 2008, 128, 234708:1–234708:6.
[3]
Mei, H.; Huang, R.; Chung, J.U.; Stafford, C.M.; Yu, H. Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 2007, 90, 151902:1–151902:3.
[4]
Audoly, B. Stability of straight delamination blisters. Phys. Rev. Lett. 1999, 83, 4124–4127, doi:10.1103/PhysRevLett.83.4124.
[5]
Hutchinson, J.W.; Suo, Z. Mixed mode cracking in layered materials. Adv. Appl. Mech. 1992, 29, 63–191.
[6]
Wirtz, H.R.; Dobbs, L.G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 1990, 250, 1266–1269.
[7]
Longo, M.; Bisagno, A.; Zasadzinski, J.; Bruni, R.; Waring, A. A function of lung surfactant protein sp-b. Science 1993, 261, 453–456.
[8]
Alonso, C.; Alig, T.; Yoon, J.; Bringezu, F.; Warriner, H.; Zasadzinski, J.A. More than a monolayer: Relating lung surfactant structure and mechanics to composition. Biophys. J. 2004, 87, 4188–4202, doi:10.1529/biophysj.104.051201.
[9]
de la Serna, J.B.; Or?dd, G.; Bagatolli, L.A.; Simonsen, A.C.; Marsh, D.; Lindblom, G.; Perez-Gil, J. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties. Biophys. J. 2009, 97, 1381–1389, doi:10.1016/j.bpj.2009.06.040.
[10]
Hallett, M.B.; Dewitt, S. Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol. 2007, 17, 209–214, doi:10.1016/j.tcb.2007.03.002.
[11]
Sackmann, E. Membrane bending energy concept of vesicle- and cell-shapes and shape-transitions. FEBS Lett. 1994, 346, 3–16, doi:10.1016/0014-5793(94)00484-6.
[12]
Ma, G.; Allen, H.C. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy. Photochem. Photobiol. 2006, 82, 1517–1529.
[13]
Nakahara, H.; Lee, S.; Shibata, O. Pulmonary surfactant model systems catch the specific interaction of an amphiphilic peptide with anionic phospholipid. Biophys. J. 2009, 96, 1415–1429, doi:10.1016/j.bpj.2008.11.022.
[14]
Holten-Andersen, N.; Henderson, J.M.; Walther, F.J.; Waring, A.J.; Ruchala, P.; Notter, R.H.; Lee, K.Y.C. Kl4 peptide induces reversible collapse structures on multiple length scales in model lung surfactant. Biophys. J. 2011, 101, 2957–2965, doi:10.1016/j.bpj.2011.10.050.
[15]
Siegel, A.P.; Murcia, M.J.; Johnson, M.; Reif, M.; Jordan, R.; Ruhe, J.; Naumann, C.A. Compartmentalizing a lipid bilayer by tuning lateral stress in a physisorbed polymer-tethered membrane. Soft Matter 2010, 6, 2723–2732, doi:10.1039/c001394c.
[16]
Siegel, A.P.; Hussain, N.F.; Johnson, M.; Naumann, C.A. Metric between buckling structures and elastic properties in physisorbed polymer-tethered lipid monolayers. Soft Matter 2012, 8, 5873–5880, doi:10.1039/c2sm25150g.
[17]
Marsh, D.; Bartucci, R.; Sportelli, L. Lipid membranes with grafted polymers: Physicochemical aspects. Biochim. Biophys. 2003, 1615, 33–59.
[18]
Rovira-Bru, M.; Thompson, D.H.; Szleifer, I. Size and structure of spontaneously forming liposomes in lipid/peg-lipid mixtures. Biophys. J. 2002, 83, 2419–2439, doi:10.1016/S0006-3495(02)75255-7.
[19]
Deverall, M.A.; Gindl, E.; Sinner, E.K.; Besir, H.; Ruehe, J.; Saxton, M.J.; Naumann, C.A. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys. J. 2005, 88, 1875–1886.
Garg, S.; Rühe, J.; Lüdtke, K.; Jordan, R.; Naumann, C.A. Domain registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid bilayers. Biophys. J. 2007, 92, 1263–1270, doi:10.1529/biophysj.106.091082.
[22]
Ritchie, K.; Shan, X.-Y.; Kondo, J.; Iwasawa, K.; Fujiwara, T.; Kusumi, A. Detection of non-brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 2005, 88, 2266–2277, doi:10.1529/biophysj.104.054106.
[23]
Marsh, D. Elastic constants of polymer-grafted lipid membranes. Biophys. J. 2001, 81, 2154–2162, doi:10.1016/S0006-3495(01)75863-8.
[24]
Simson, R.; Wallraff, E.; Faix, J.; Niew?hner, J.; Gerisch, G.; Sackmann, E. Membrane bending modulus and adhesion energy of wild-type and mutant cells of dictyostelium lacking talin or cortexillins. Biophys. J. 1998, 74, 514–522, doi:10.1016/S0006-3495(98)77808-7.
[25]
Hwang, W.C.; Waugh, R.E. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys. J. 1997, 72, 2669–2678, doi:10.1016/S0006-3495(97)78910-0.
[26]
de Meyer, F.; Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 2009, 106, 3654–3658, doi:10.1073/pnas.0809959106.
Rukmini, R.; Rawat, S.S.; Biswas, S.C.; Chattopadhyay, A. Cholesterol organization in membranes at low concentrations: Effects of curvature stress and membrane thickness. Biophys. J. 2001, 81, 2122–2134, doi:10.1016/S0006-3495(01)75860-2.
Parton, R.G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Bio. 2007, 8, 185–194, doi:10.1038/nrm2122.
[33]
Thiele, C.; Hannah, M.J.; Fahrenholz, F.; Huttner, W.B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2000, 2, 42–49, doi:10.1038/71366.
[34]
Ledesma, M.D.; Dotti, C.G. Membrane and cytoskeleton dynamics during axonal elongation and stabilization. Int. Rev. Cytol. 2003, 227, 183–219.
[35]
Michael, S.P. Cell control by membrane-cytoskeleton adhesion. Nat. Rev. Mol. Cell Bio. 2001, 2, 392–396.
[36]
Sun, M.; Northup, N.; Marga, F.; Huber, T.; Byfield, F.J.; Levitan, I.; Forgacs, G. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J. Cell Sci. 2007, 120, 2223–2231, doi:10.1242/jcs.001370.
[37]
Bernardino de la Serna, J.; Perez-Gil, J.; Simonsen, A.C.; Bagatolli, L.A. Cholesterol rules: Direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 2004, 279, 40715–40722.
[38]
Stachowiak, J.C.; Hayden, C.C.; Sasaki, D.Y. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc. Natl. Acad. Sci. USA 2010, 107, 7781–7786, doi:10.1073/pnas.0913306107.
[39]
Harvey, T.M.; Jennifer, L.G. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005, 438, 590–596, doi:10.1038/nature04396.