全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent

DOI: 10.3390/polym5010128

Keywords: cotton fiber, composites, poly(butylene succinate), silane coupling agent

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, the use of cotton fiber (CF) as a filler in poly(butylene succinate) (PBS) and the effect of silane treatment on the mechanical properties, thermal stability, and biodegradability of PBS/CF composites are investigated. The results showed that the tensile strength of PBS was improved (15%–78%) with the incorporation of CF (10–40 wt%) and was further increased (25%–118%) when CF was treated with a silane coupling agent. Scanning electron microscopy (SEM) observation of the fracture surfaces of PBS/CF composites showed that there was slight improvement in fiber-matrix compatibility. Thermogravimetric (TG) analysis showed that the thermal stability of the composites was lower than that of neat PBS and decreased with increasing filler loading. The biobased carbon content of the composites increased with increasing CF content. The incorporation of CF (with and without silane treatment) in PBS significantly increased the biodegradation rate of the composites.

References

[1]  Tachibana, Y.; Giang, N.T.G.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending: Mechanical properties, biomass carbon ratio, and control of biodegradability. Polym. Degrad. Stab. 2010, 95, 1406–1413, doi:10.1016/j.polymdegradstab.2010.01.006.
[2]  Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos.Part B 2009, 42, 856–873.
[3]  Zhao, Y.; Qui, J.; Feng, H.; Zhang, M. The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: Effect of aminosilane with different alkoxy groups. J. Appl. Polym. Sci. 2012, 125, 3211–3220, doi:10.1002/app.36502.
[4]  Teramoto, N.; Urata, K.; Ozawa, K.; Shibata, M. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym. Degrad. Stab. 2004, 86, 401–409, doi:10.1016/j.polymdegradstab.2004.04.026.
[5]  Liang, Z.; Pan, P.; Zhu, B.; Dong, T.; Inoue, Y. Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J. Appl. Polym. Sci. 2010, 115, 3559–3567, doi:10.1002/app.29848.
[6]  Liu, L.; Yu, J.; Cheng, L.; Yang, X. Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym. Degrad. Stab. 2009, 94, 90–94, doi:10.1016/j.polymdegradstab.2008.10.013.
[7]  Fan, D.; Chang, P.R.; Lin, N.; Yu, J.; Huang, J. Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran. Polym. J. 2011, 20, 3–14.
[8]  Lee, S.H.; Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A 2006, 37, 80–91, doi:10.1016/j.compositesa.2005.04.015.
[9]  Shih, Y.F.; Lee, W.C.; Jeng, R.J.; Huang, C.M. Water bamboo husk-reinforced poly(butylene succinate) biodegradable composites. J. Appl. Polym. Sci. 2006, 99, 188–199, doi:10.1002/app.22220.
[10]  Kim, H.S.; Yang, H.S.; Kim, H.J. Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513–1521, doi:10.1002/app.21905.
[11]  Flores, E.D.; Funabashi, M.; Kunioka, M. Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J. Appl. Polym. Sci. 2009, 112, 3410–3417, doi:10.1002/app.29777.
[12]  Ohkita, T.; Lee, S.H. Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J. Appl. Polym. Sci. 2005, 97, 1107–1114, doi:10.1002/app.21741.
[13]  Silva, C.G.; Benaducci, D.B.; Frollini, E. Lyocell and cotton fibers as reinforcements for a thermoset polymer. Bioresources 2011, 7, 78–98.
[14]  Raftoyiannis, I.G. Experimental testing of composite panels reinforced with cotton fibers. Open J. Compos. Mater. 2012, 2, 31–39, doi:10.4236/ojcm.2012.22005.
[15]  Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 1999, 24, 221–274.
[16]  Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10, 19–26, doi:10.1023/A:1021013921916.
[17]  Rozman, H.D..; Tan, K.W.; Kumar, R.N.; Abubakar, A.; Mohd Ishak, Z.A.; Ismail, H. Effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur. Polym. J. 2000, 36, 1483–1494, doi:10.1016/S0014-3057(99)00200-1.
[18]  Peltola, H.; Laatkainen, E.; Jetsu, P. Effects of physical treatment of wood fibres on fibre morphology and biocomposite properties. Plast. Rubber Compos. 2011, 40, 86–92, doi:10.1179/174328911X12988622801016.
[19]  Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B, 2012. Available online: http://dx.doi.org/10.1016/j.compositesb.2012.04.053.
[20]  Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Salah, A.B.; Gandini, A. Modification of cellulosic fibres with functionalized silanes: Development of surface properties. Int. J. Adhes. Adhes. 2004, 24, 43–54, doi:10.1016/S0143-7496(03)00099-X.
[21]  Castellano, M.; Gandini, A.; Fabbri, P.; Belgacem, M.N. Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur? J. Colloid. Interface Sci. 2004, 273, 505–511, doi:10.1016/j.jcis.2003.09.044.
[22]  Funabashi, M.; Ninomiya, F.; Flores, E.D.; Kunioka, M. Biomass carbon ratio of polymer composites measured by accelerator mass spectrometry. J. Polym. Environ. 2010, 18, 85–93, doi:10.1007/s10924-010-0166-3.
[23]  Funabashi, M.; Ninomiya, F.; Ohara, K.; Kunioka, M. Biomass carbon ratio of biomass chemicals measured by accelerator mass spectrometry. Bull. Chem. Soc. Jpn. 2009, 82, 1538–1547, doi:10.1246/bcsj.82.1538.
[24]  Funabashi, M.; Kunioka, M.; Listyarini, A. Biomass carbon ratio of biobased polymer composites filled with cellulose fillers measured by accelerator mass spectrometry. WIT Trans. Built. Environ. 2008, 97, 221–230.
[25]  Listyarini, A.; Kunioka, M.; Funabashi, M. Biodegradable poly(butylene succinate) blended with biorenewable derivatives from polysaccharides. Trans. Mater. Res. Soc. Jpn. 2008, 33, 1159–1164.
[26]  Kunioka, M.; Ninomiya, F.; Funabashi, M. Biobased contents of organic fillers and polycaprolactone composites with cellulose fillers measured by accelerator mass spectrometry based on ASTM D6866. J. Polym. Environ. 2007, 15, 281–287, doi:10.1007/s10924-007-0071-6.
[27]  Kunioka, M.; Ninomiya, F.; Funabashi, M. Novel evaluation method of biodegradabilities for oil-based polycaprolactone by naturally occurring radiocarbon-14 concentration using accelerator mass spectrometry based on ISO 14855–2 in controlled compost. Polym. Degrad. Stab. 2007, 92, 1279–1288, doi:10.1016/j.polymdegradstab.2007.03.028.
[28]  Kunioka, M.; Inuzuka, Y.; Ninomiya, F.; Funabashi, M. Biobased contents of biodegradable poly(ε-caprolactone) composites polymerized and directly molded using aluminum triflate from caprolactone with cellulose and inorganic filler. Macromol. Biosci. 2006, 6, 517–523, doi:10.1002/mabi.200600037.
[29]  29. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved In a Laboratory-Scale Test; ISO 14855–2; ISO: Geneva, Switzerland, 2007.
[30]  Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58 °C evaluated by naturally-occurring Carbon 14 amounts in evolved CO2 based on the ISO 14855–2 method. Int. J. Mol. Sci. 2009, 10, 4267–4283, doi:10.3390/ijms10104267.
[31]  Funabashi, M.; Ninomiya, F.; Kunioka, M. Biodegradability evaluation of polymers by ISO 14855–2. Int. J. Mol. Sci. 2009, 10, 3635–3654, doi:10.3390/ijms10083635.
[32]  Standard test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples using Radiocarbon Analysis. In ASTM D6866–12; ASTM: West Conshohocken, PA, USA, 2012.
[33]  Nakatani, H.; Iwakura, K.; Miyazaki, K.; Okazaki, N.; Terrano, M. Effect of chemical structure of silane coupling agent on interface adhesion properties of syndiotactic polypropylene/cellulose composite. J. Appl. Polym. Sci. 2011, 119, 1732–1741, doi:10.1002/app.32873.
[34]  Sombatsompop, N.; Chaochanchaikul, K. Average mixing torque, tensile and impact properties, and thermal stability of poly(vinyl chloride)/sawdust composites with different silane coupling agents. J. Appl. Polym. Sci. 2005, 96, 213–221, doi:10.1002/app.21422.
[35]  Correlo, V.M.; Boesel, L.F.; Pinho, E.; Costa-Pintp, A.R.; Alves da Silva, M.L.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties. J. Biomed. Mater. Res. 2009, 91A, 489–504, doi:10.1002/jbm.a.32221.
[36]  Kokta, B.V.; Dembele, F.; Daneult, C.B. Polymer Science and Technology; Carraher, J.R., Sperling, L.H., Eds.; Plenum: New York, NY, USA, 1985; Volume 33.
[37]  Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. The effect of silane treated-and untreated-talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. Part B 2007, 38, 367–379, doi:10.1016/j.compositesb.2006.06.010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133