|
BMC Genomics 2010
Evaluation of external RNA controls for the standardisation of gene expression biomarker measurementsAbstract: Panels of ERCC RNA standards were constructed in order to test the utility of these reference materials (RMs) for performance characterization of two selected gene expression platforms, and for discrimination of biomarker profiles between groups. The linear range, limits of detection and reproducibility of microarray and RT-qPCR measurements were evaluated using panels of RNA standards. Transcripts of low abundance (≤ 10 copies/ng total RNA) showed more than double the technical variability compared to higher copy number transcripts on both platforms. Microarray profiling of two simulated 'normal' and 'disease' panels, each consisting of eight different RNA standards, yielded robust discrimination between the panels and between standards with varying fold change ratios, showing no systematic effects due to different labelling and hybridization runs. Also, comparison of microarray and RT-qPCR data for fold changes showed agreement for the two platforms.ERCC RNA standards provide a generic means of evaluating different aspects of platform performance, and can provide information on the technical variation associated with quantification of biomarkers expressed at different levels of physiological abundance. Distinct panels of standards serve as an ideal quality control tool kit for determining the accuracy of fold change cut-off threshold and the impact of experimentally-derived noise on the discrimination of normal and disease profiles.Transcriptomic approaches such as gene expression microarrays are being used routinely in diverse fields of research, such as toxicology and cancer biology, in order to characterize biological processes and find biomarkers indicative of pathological states and processes [1-3]. Compared to traditional clinical outcome measurements where a single biochemical measurement or histopathological score is interpreted, gene expression signatures resulting from microarray experiments generate a molecular fingerprint consisting of multiple biomark
|