|
BMC Genomics 2006
In silico identification and comparative analysis of differentially expressed genes in human and mouse tissuesAbstract: To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships.Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website http://gln.ibms.sinica.edu.tw/product/HMDEG/EST/index.php webcite, for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes.High-throughput analysis of gene expression offers a powerful means of studying how genes work and of uncovering the secrets encoded in genome sequences. Differential gene expression, which plays a key role in various cellular processes, can be quantified by analyzing a large number of transcription products. To do so, several large-scale transcript detection technologies have been developed, chief among which are variants of microarray technology [1,2], expressed sequence tags (ESTs
|